精英家教网 > 高中数学 > 题目详情
16.如图,平行四边形ABCD中,AB=1,AD=4,CE=$\frac{1}{3}$CB.CF=$\frac{2}{3}$CD,∠DAB=60°,求$\overrightarrow{AC}$•$\overrightarrow{FE}$的值.

分析 根据向量的基本定理结合向量数量积的公式进行计算即可.

解答 解:∵$\overrightarrow{FE}$=$\overrightarrow{CE}-\overrightarrow{CF}$=-$\frac{1}{3}$$\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{AB}$,$\overrightarrow{AC}$=$\overrightarrow{AD}$+$\overrightarrow{AB}$,
∴$\overrightarrow{AC}$•$\overrightarrow{FE}$=(-$\frac{1}{3}$$\overrightarrow{AD}$+$\frac{2}{3}$$\overrightarrow{AB}$)•($\overrightarrow{AD}$+$\overrightarrow{AB}$)=-$\frac{1}{3}$$\overrightarrow{AD}$2+$\frac{2}{3}$$\overrightarrow{AB}$2+$\frac{1}{3}$$\overrightarrow{AD}$•$\overrightarrow{AB}$=-$\frac{1}{3}×16$$+\frac{2}{3}$$+\frac{1}{3}×1×4×\frac{1}{2}$=$\frac{2}{3}$+$\frac{2}{3}$-$\frac{16}{3}$=-4.

点评 本题主要考查向量数量积的计算,根据向量基本定理求出$\overrightarrow{AC}$和$\overrightarrow{FE}$的表达式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1,D为AB的中点,且CD⊥DA1
(I)求证:BC1∥平面DCA1
(II)求证:平面ABC⊥平面ABB1A1
(III)求BC1与平面ABB1A1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,点A是椭圆C上任意一点,且△AF1F2的周长为2($\sqrt{2}$+1)
(1)求椭圆C的标准方程;
(2)若动点B在直线l:y=$\sqrt{2}$上,且OA⊥OB,点O到直线AB的距离为d(A,B),求证:d(A,B)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,AB是⊙O的直径,CB切⊙O于点B,CD切⊙O于点D,交BA延长线于点E,若ED=$\sqrt{3}$,∠ADE=30°,则△BDC的外接圆的直径为(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由函数y=sin(5x+$\frac{π}{6}$)的图象得到y=sinx的图象,下列操作正确的是(  )
A.将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变
B.将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标伸长为原来的5倍,纵坐标不变
C.将y=sin(5x+$\frac{π}{6}$)的图象向右平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变
D.将y=sin(5x+$\frac{π}{6}$)的图象向左平移$\frac{π}{30}$;再将所有点的横坐标缩短为原来的$\frac{1}{5}$倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=sinxcosx+$\frac{1}{2}$最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:
x367910
y1210887
(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(α+$\frac{π}{4}$)=2,tan(β-$\frac{3π}{4}$)=-3,则tan(α-β)=(  )
A.1B.-$\frac{5}{7}$C.$\frac{5}{7}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.30°角所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案