精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若m=-1求A∩B;
(2)若A⊆B,求实数m的取值范围.

分析 (1)先求出集合A,集合B,由此利用交集定义能求出A∩B.
(2)由集合A={x|1<x<3},集合B={x|2m<x<1-m},A⊆B,利用子集性质能求出实数m的取值范围.

解答 (本题12分)
解:(1)m=1时,集合A={x|1<x<3},集合B={x|-2<x<2}.
∴A∩B={x|1<x<2}.
(2)∵集合A={x|1<x<3},集合B={x|2m<x<1-m},A⊆B,
∴$\left\{\begin{array}{l}1-m>2m\\ 2m≤1\\ 1-m≥3\end{array}\right.$,解得m≤-2,
即实数m的取值范围为(-∞,-2].

点评 本题考查交集的求法,考查实数取值范围的求法,是基础题,解题时要认真审题,注意交集定义、子集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x2+(2-m)x-m,g(x)=x2-x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求关于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某百货公司1~6月份的销售量x与利润y的统计数据如表:
月份123456
销售量x(万件)1011131286
利润y(万元)222529261612
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$)=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有两个不同的非零实根x1,x2
(1)求证:x1+x2<-2;
(2)若实数λ满足等式f(x1)+f(x2)+3a-λb=0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=-1,则f($\frac{2017π}{3}$)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.作图并求值域,单调区间:y=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}中,an+1=36,an+3=m,an+5=4,则圆锥曲线$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{5}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两点A(3,2),B(-1,2),圆C以线段AB为直径.
(Ⅰ)求圆C的方程;
(Ⅱ)求过点M(3,1)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-a|+|2x-1|.
(Ⅰ)当a=1时,解不等式f(x)≥2;
(Ⅱ)求证:$f(x)≥|a-\frac{1}{2}|$.

查看答案和解析>>

同步练习册答案