分析 (1)先求出集合A,集合B,由此利用交集定义能求出A∩B.
(2)由集合A={x|1<x<3},集合B={x|2m<x<1-m},A⊆B,利用子集性质能求出实数m的取值范围.
解答 (本题12分)
解:(1)m=1时,集合A={x|1<x<3},集合B={x|-2<x<2}.
∴A∩B={x|1<x<2}.
(2)∵集合A={x|1<x<3},集合B={x|2m<x<1-m},A⊆B,
∴$\left\{\begin{array}{l}1-m>2m\\ 2m≤1\\ 1-m≥3\end{array}\right.$,解得m≤-2,
即实数m的取值范围为(-∞,-2].
点评 本题考查交集的求法,考查实数取值范围的求法,是基础题,解题时要认真审题,注意交集定义、子集性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x(万件) | 10 | 11 | 13 | 12 | 8 | 6 |
利润y(万元) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{5}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{5}$或$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com