精英家教网 > 高中数学 > 题目详情
(2007•静安区一模)(文)如图,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别是棱AB、AD的中点.求:
(1)异面直线BC1与EF所成角的大小;
(2)三棱锥A1-EFC的体积V.
分析:(1)因为点E、F分别是棱AB、AD的中点,所以EF∥BD⇒∠C1BD是异面直线BC1与EF所成的角;在△DBC1中,求出∠C1BD即可;
(2)先求出三角形EFC的面积,再根据A1A即为三棱锥的高代入体积计算公式即可.
解答:解:(1)因为点E、F分别是棱AB、AD的中点,所以EF∥BD,
所以∠C1BD是异面直线BC1与EF所成的角. (4分)
在△DBC1中,∠C1BD=60°.
所以异面直线BC1与EF所成角的大小为60°.               (8分)
(2)因为:S△EFC=SABCD-S△AEF-S△CDF-S△BCE=2×2-
1
2
×1×1-
1
2
×2×1-
1
2
×2×1=
3
2

VA1-EFC=
1
3
AA1S△EFC
=
1
3
×2×
3
2
=1.(14分)
点评:本题主要考查异面直线及其所成的角以及三棱锥的体积计算.解决第二问的关键在于对公式的熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•静安区一模)一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(文)函数f(x)=x+
2
x
(x∈(0 , 2 ] )
的值域是
[2
2
,+∞)
[2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(理)设满足不等式
a(x-2)x+3
<2
的解集为A,且1∉A,则实数a的取值范围是
(-∞,-8]
(-∞,-8]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)设f(x)=
-2x+a2x+1+b
(a,b为实常数).
(1)当a=b=1时,证明:f(x)不是奇函数;
(2)设f(x)是实数集上的奇函数,求a与b的值;
(3)(理) 当f(x)是实数集上的奇函数时,证明对任何实数x、c都有f(x)<c2-3c+3成立.
(4)(文)求(2)中函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•静安区一模)(文)不等式组
2x-y+2≥0
x≤0
0≤y≤1
表示的平面区域形状是一个(  )

查看答案和解析>>

同步练习册答案