精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体是圆柱的一部分,它是由矩形及其内部边所在直线为旋转轴旋转得到的,点是弧上的一点,点是弧的中点.

1)求证:平面平面

(2)当时,求二面角的正弦值.

【答案】(1)见解析(2)

【解析】【试题分析】(1)由于为弧的中点,根据垂径定理可有,在圆柱内有,由此证得平面,进而得到平面平面.(2)以点为坐标原点,分别以, 轴建立如图所示的平面直角坐标系,通过计算平面和平面的法向量,利用向量夹角公式求得二面角的余弦值,进而求得其正弦值.

【试题解析】

(1)证明: 在圆B,P的中点, .

平面, ,,

平面,

平面平面

(2):以点B为坐标原点,分别以BC,BA, 轴建立如图所示的平面直角坐标系.

.设平面的法向量

设平面的法向量

.10分)设二面角的平面角大小为

,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列有关命题的叙述错误的是(

A. 对于命题p: ,则 .

B. 命题的逆否命题为”.

C. 为假命题,则均为假命题.

D. 的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

某初级中学共有学生2000名,各年级男、女生人数如下表:


初一年级

初二年级

初三年级

女生

373

x

y

男生

377

370

z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

x的值;

现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

已知y245,z245,求初三年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,定义域为的函数是偶函数,其中为自然对数的底数.

(Ⅰ)求实数值;

(Ⅱ)判断该函数上的单调性并用定义证明;

(Ⅲ)是否存在实数,使得对任意的,不等式恒成立.若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数且.

(1)当时,求曲线在点处的切线方程;

(2)讨论函数的单调性;

(3)当时, 若存在使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费x(单位:万元)对年销量y(单位:吨)和年利润(单位:万元)的影响.对近6宣传费xi和年销售量yii=1,2,3,4,5,6)的数据做了初步统计,得到如下数据:

年份

2013

2014

2015

2016

2017

2018

年宣传费x(万元)

38

48

58

68

78

88

年销售量y(吨)

16.8

18.8

20.7

22.4

24.0

25.5

经电脑模拟,发现年宣传费x(万元)与年销售量y(吨)之间近似满足关系式yaxbab>0),即lnyblnx+lna,对上述数据作了初步处理,得到相关的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于20吨的概率.

(Ⅱ)根据所给数据,求关于的回归方程;

(Ⅲ) 若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为(万元),假定该产品产销平衡(即生产的产品都能卖掉),则2019年该公司应该投入多少宣传费才能使利润最大?(其中

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点,其右焦点为.点是椭圆上异于长轴端点的任意一点,连接并延长交椭圆于点,线段的中点为为坐标原点,且直线与右准线交于点

(1)求椭圆的标准方程;

(2)若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥如图所示其中 二面角的大小为.

1证明:

2为线段的中点 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求证上是单调递减函数;

2)若对任意的,不等式恒成立,求实数的取值范围;

3)讨论函数的零点个数.

查看答案和解析>>

同步练习册答案