精英家教网 > 高中数学 > 题目详情
(2011•通州区一模)已知函数f(x)=ln(1+2x)+
ax
,a∈R.
(I)证明当a<0时,?x∈(0,+∞),总有f(x+1)>f(x);
(II)若f(x)存在极值点,求a的取值范围.
分析:(I)求导函数,确定函数当a<0时,x∈(0,+∞)时的单调性,即可证明f(x+1)>f(x);
(II)利用f(x)存在极值点,结合函数的定义域,可得方程,即可求a的取值范围.
解答:(I)证明:求导函数可得f′(x)=
2
1+2x
-
a
x2

∵a<0时,x∈(0,+∞),∴f′(x)>0
∴f(x)在(0,+∞)上单调递增
∵x+1>x>0
∴f(x+1)>f(x);
(II)解:令f′(x)=0,可得
2
1+2x
-
a
x2
=0(x>-
1
2

∵f(x)存在极值点,
2
1+2x
-
a
x2
=0在x>-
1
2
时成立
a=
2x2
1+2x

x=0时,a=0,f(x)=ln(1+2x),函数不存在极值点;
x≠0时,a=
2
1
x2
+
2
x
=
2
(
1
x
+1)2-1

x>-
1
2
,∴(
1
x
+1)
2
-1>0

2
(
1
x
+1)
2
-1
>2
∴a>2.
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的极值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•通州区一模)已知f(x)=xex,则f′(1)=
2e
2e

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)若(a-i)i=b-i,其中a,b∈R,i是虚数单位,则a2+b2=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)如果a、x1、x2、b成等差数列,a、y1、y2、b成等比数列,那么
x1+x2
y1y2
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)已知集合A={x|x>1},集合B={x|x2+x≤6},则A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•通州区一模)在长方体ABCD-A1B1C1D1中,用过A,B1,D1三点的平面将其一角A1AB1D1截下,所得到的几何体ABCD-B1C1D1的左视图是(  )

查看答案和解析>>

同步练习册答案