精英家教网 > 高中数学 > 题目详情
已知△ABC的三边长a,b,c满足b+c≤2a,c+a≤2b,求的取值范围.
【答案】分析:由题设条件,本题要结合三角形的性质两边之和大于第三边及题设中的不等式b+c≤2a,c+a≤2b,利用简单线性规划寻求得到的取值范围.
解答:解:设,根据三角形的性质两边之和大于第三边及题设中的不等式,得


作出平面区域(如右图),
由图知:
,即
点评:本题考查不等式的综合,熟练掌握不等式的性质,能灵活运用简单线性规划进行求解,求出要求的范围是解答本题的关键,本题中有一个容易漏掉的隐含条件,三角形中两边之和大于第三边,对题设中隐含条件的挖掘对解题的完整性很重要,谨记
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=
2Sa+b+c
.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长a,b,c满足b+2c≤3a,c+2a≤3b,则
ba
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为a、b、c,满足直线ax+by+c=0与圆x2+y2=1相离,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为三个连续的正整数,且最大角为钝角,则最长边长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则
CP
•(
BA
-
BC
)
的最大值为
 

查看答案和解析>>

同步练习册答案