【题目】设a<0,(x2+2017a)(x+2016b)≥0在(a,b)上恒成立,则b﹣a的最大值为 .
科目:高中数学 来源: 题型:
【题目】在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两条直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0. 求满足下列条件的a,b值.
(Ⅰ)l1⊥l2且l1过点(﹣3,﹣1);
(Ⅱ)l1∥l2且原点到这两直线的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为 ( )的离心率为 ,圆的方程为 ,若椭圆与圆 相交于 , 两点,且线段 恰好为圆 的直径.
(1)求直线 的方程;
(2)求椭圆 的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是满足下列性质的函数的全体:在定义域内存在,使得成立.
(1)函数是否属于集合M?说明理由;
(2)设函数,求的取值范围;
(3)已知函数图象与函数的图象有交点,根据该结论证明:函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 .
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若函数f(x)存在极值,对于任意的0<x1<x2 , 存在正实数x0 , 使得f(x1)﹣f(x2)=f'(x0)(x1﹣x2),试判断x1+x2与2x0的大小关系并给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com