精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且an=
1
2
(3n+Sn)对一切正整数n成立
(1)求出:a1,a2,a3的值
(2)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(3)设bn=
n
3
an,求数列{bn}的前n项和Bn;数列{an}中是否存在构成等差数列的四项?若存在求出一组;否则说明理由.
(1)由an=
1
2
(3n+Sn)可得Sn=2an-3n,故an+1=Sn+1-Sn=2an+3
∵a1=
1
2
(3+S1),∴a1=3,∴a2=9,a3=21;
(2)证明:由待定系数法得an+1+3=2(an+3)
又a1+3=6≠0
∴数列{an+3}是以6为首项,2为公比的等比数列.
∴an+3=6×2n-1
∴an=3(2n-1).
(3)由(2)可得bn=n2n-n,
∴Bn=1×21+2×22+3×23+…+n×2n-(1+2+3+…+n)   ①
∴2Bn=1×22+2×23+3×24+…+n×2n+1-2(1+2+3+…+n)   ②
①-②得,-Bn=2+(22+23+…+2n)+
n(n+1)
2

化简可得Bn=2+(n-1)2n+1-
n(n+1)
2

假设数列{an}存在构成等差数列的四项依次为:am、an、ap、aq(m<n<p<q)
则3(2m-1)+3(2q-1)=3(2n-1)+3(2p-1)∴2m+2q=2n+2p
上式两边同除以2m,则1+2q-m=2n-m+2p-m
∵m、n、p、q∈N*,且m<n<p<q,
∴上式左边是奇数,右边是偶数,相矛盾.
∴数列{an}不存在构成等差数列的四项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案