【题目】随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美味,这样网上外卖订餐应运而生.若某商家的一款外卖便当每月的销售量(单位:千盒)与销售价格(单位:元/盒)满足关系式其中,为常数,已知销售价格为14元/盒时,每月可售出21千盒.
(1)求的值;
(2)假设该款便当的食物材料、员工工资、外卖配送费等所有成本折合为每盒12元(只考虑销售出的便当盒数),试确定销售价格的值,使该店每月销售便当所获得的利润最大.(结果保留一位小数)
科目:高中数学 来源: 题型:
【题目】在下列命题中,正确命题的个数为( )
①两个复数不能比较大小;
②,若,则;
③若是纯虚数,则实数;
④是虚数的一个充要条件是;
⑤若是两个相等的实数,则是纯虚数;
⑥的一个充要条件是.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数h(x)=lnx+ .
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)﹣ +ax2﹣2x有两个不同的极值点,其极小值为M,试比较2M与﹣3的大小关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共14分)
如图,在四棱锥中, 平面,底面是菱形, .
(Ⅰ)求证: 平面
(Ⅱ)若求与所成角的余弦值;
(Ⅲ)当平面与平面垂直时,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x++3,则对于y=f(x)在x<0时,下列说法正确的是( )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b 是函数 的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知ABCD—A′B′C′D′是平行六面体.
(1)化简;
(2)设M是底面ABCD的中心,N是侧面BC C′ B′对角线B C′上的分点,设,试求α,β,γ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com