精英家教网 > 高中数学 > 题目详情

【题目】随着人们生活水平的不断提高,人们对餐饮服务行业的要求也越来越高,由于工作繁忙无法抽出时间来享受美味,这样网上外卖订餐应运而生.若某商家的一款外卖便当每月的销售量(单位:千盒)与销售价格(单位:元/盒)满足关系式其中,为常数,已知销售价格为14元/盒时,每月可售出21千盒.

(1)求的值;

(2)假设该款便当的食物材料、员工工资、外卖配送费等所有成本折合为每盒12元(只考虑销售出的便当盒数),试确定销售价格的值,使该店每月销售便当所获得的利润最大.(结果保留一位小数)

【答案】(1)10;(2)当销售价格为元/盒时,商家每日销售所获得的利润最大

【解析】

(1)时,,代入关系式, 解得. (2)

先求出每日销售外卖便当所获得的利润,再利用导数求它的最大值.

(1)因为时,,代入关系式,得, 解得.

(2)由(1)可知,外卖便当每日的销售量

所以每日销售外卖便当所获得的利润

从而.

,得,

且在上,,函数f(x)单调递增;在上,,函数f(x)单调递减,所以是函数f(x)内的极大值点,也是最大值点,

所以当时,函数f(x)取得最大值.

故当销售价格为元/盒时,商家每日销售所获得的利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在下列命题中,正确命题的个数为(  )

两个复数不能比较大小;

,若,则

是纯虚数,则实数

是虚数的一个充要条件是

是两个相等的实数,则是纯虚数;

的一个充要条件是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)求的值;

(II)求

(III)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=lnx+
(1)函数g(x)=h(2x+m),若x=1是g(x)的极值点,求m的值并讨论g(x)的单调性;
(2)函数φ(x)=h(x)﹣ +ax2﹣2x有两个不同的极值点,其极小值为M,试比较2M与﹣3的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共14分)

如图,在四棱锥中, 平面,底面是菱形, .

()求证: 平面

)若所成角的余弦值;

)当平面与平面垂直时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x++3,则对于y=f(x)在x<0时,下列说法正确的是(  )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b 是函数 的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCDABCD是平行六面体.

(1)化简

(2)M是底面ABCD的中心,N是侧面BC C B对角线B C上的分点,设,试求αβγ的值.

查看答案和解析>>

同步练习册答案