精英家教网 > 高中数学 > 题目详情
19.在一个直角边长为10m的等腰直角三角形ABC的草地上,铺设一个也是等腰直角三角形PQR的花地,要求P,Q,R三点分别在△ABC的三条边上,且要使△PQR的面积最小,现有两种设计方案:
方案-:直角顶点Q在斜边AB上,R,P分别在直角边AC,BC上;
方案二:直角顶点Q在直角边BC上,R,P分别在直角边AC,斜边AB上.请问应选用哪一种方案?并说明理由.

分析 分别求出两种方案,面积的最小值,即可得出结论.

解答 解:方案-:直角顶点Q在斜边AB上,R,P分别在直角边AC,BC上,则P,Q,R,C四点共圆,且AB与圆相切时△PQR的面积最小,最小面积为$\frac{1}{2}×5×5$=$\frac{25}{2}$;
方案二:直角顶点Q在直角边BC上,R,P分别在直角边AC,斜边AB上,设QP=QR=l,∠QRC=α,
∴2lsinα+lcosα=10,
∴l=$\frac{10}{2sinα+cosα}$=$\frac{10}{\sqrt{5}sin(α+θ)}$≥$\frac{10}{\sqrt{5}}$,
∴最小面积为$\frac{1}{2}×(\frac{10}{\sqrt{5}})^{2}$=10,
∵$\frac{25}{2}$>10,
∴应选用方案二.

点评 本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足为M.
(1)求证:BD⊥平面PAC.
(2)求证:平面MBD⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设△ABC的内角A,B,C所对的边分别是a,b,c,且$\frac{a}{b}$cosC+$\frac{c}{2b}$=1.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形为边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的圆O交于C,F,连接CF并延长交AB于点E.
(1)求证:E是AB的中点;
 (2)求线段EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a,b是常数,ab≠0,若函数f(x)=ax3+barcsinx+3的最大值为10,则f(x)的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知幂函数y=$({m}^{2}-m-1)x^{{m}^{2}-2m-1}$是幂函数,且是偶函数,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设π<α<2π,向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(sinα,2cosα),$\overrightarrow{c}$=(cosα,-2sinα).
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α;
(2)若|$\overrightarrow{b}$+$\overrightarrow{c}$|=$\sqrt{3}$,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆M的方程:x2+y2+Dx+Ey+F=0,其圆心M(-1,1),则实数F的范围是(  )
A.F>2B.F≥2C.F<2D.F≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足$\left\{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则3x-y的最大值是(  )
A.-2B.0C.2D.6

查看答案和解析>>

同步练习册答案