精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分)已知圆有以下性质:

过圆上一点的圆的切线方程是.

为圆外一点,过作圆的两条切线,切点分别为则直线的方程为.

若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);

(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;

(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.

【答案】(1)

(2)

(3)见解析.

【解析】分析:(1)根据类比推理可得结论.(2)设,结合(1)可得过点的切线方程,根据两切线都过点可得,再结合过两点的直线唯一的特点可得直线的方程是.(3)先由直线的方程可得,又,所以.令线段的中点为,由点差法得,于是,故,所以三点共线,从而得到平分线段

详解:(1)过椭圆上一点的切线方程是

(2)设

由(1)得过椭圆上点的切线的方程是

∵直线过点

同理

又过两点A,B的直线是唯一的,

∴直线的方程是

(3)由(2)知过两点的直线方程是

为定值

线段的中点为,则

∵点均在椭圆上,

①得

三点共线

平分线段

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.

产品质量/克

频数

(490495]

6

(495500]

8

(500505]

14

(505510]

8

(510515]

4

甲流水线样本频数分布表:

甲流水线

乙流水线

总计

合格品

不合格品

总计

1根据上表数据作出甲流水线样本的频率分布直方图

2若以频率作为概率,试估计从乙流水线任取件产品,该产品恰好是合格品的概率;

3由以上统计数据完成下面列联表,能否在犯错误的概率不超过的前提下认为产品的包装质量与两条自动包装流水线的选择有关?

附表:

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数24;第三次取3个连续奇数579;第四次取4个连续偶数10121416;第五次取5个连续奇数1719212325,按此规律取下去,得到一个子数列124579101214161719…,则在这个子数中第2014个数是(

A. 3965 B. 3966 C. 3968 D. 3989

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C是单位圆上三个互不相同的点.若 ,则 的最小值是(
A.0
B.-
C.-
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公比为2的等比数列{an}中,a2与a3的等差中项是9
(1)求a1的值;
(2)若函数y=|a1|sin( x+φ),|φ|<π,的一部分图象如图所示,M(﹣1,|a1|),N(3,﹣|a1|)为图象上的两点,设∠MPN=β,其中P与坐标原点O重合,0<β<π,求tan(φ﹣β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)用这六个数字,可以组成多少个分别符合下

列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于的数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣x2﹣ax.
(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)在[0,1]上的最值;
(2)令g(x)=f(x)+ (x2﹣a2),若x≥0时,g(x)≥0恒成立,求实数a的取值范围;
(3)当a=0且x>0时,证明f(x)﹣ex≥xlnx﹣x2﹣x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图的程序框图,若运行此程序,则输出S的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是( )

A. 方程有实根函数有零点

B. 有两个不同的实根

C. 函数上满足,则内有零点

D. 单调函数若有零点,至多有一个

查看答案和解析>>

同步练习册答案