精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x|x﹣a|的定义域为D,其中a为常数;
(1)若D=R,且f(x)是奇函数,求a的值;
(2)若a≤﹣1,D=[﹣1,0],函数f(x)的最小值是g(a),求g(a)的最大值;
(3)若a>0,在[0,3]上存在n个点xi(i=1,2,…,n,n≥3),满足x1=0,xn=3,x1<x2<…<xn , 使|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xn1)﹣f(xn)|= ,求实数a的取值.

【答案】
(1)解:∵f(x)是R上的奇函数,

∴f(﹣1)+f(1)=﹣|﹣1﹣a|+|1﹣a|=0,

∴|a﹣1|=|a+1|,解得a=0.

∴f(x)=x|x|,经过验证满足题意


(2)解:a≤﹣1,D=[﹣1,0],函数f(x)=x(x﹣a)=

①a≤﹣2时,对称轴x= ≤﹣1,函数f(x)在D上单调递增,

∴f(x)的最小值是f(﹣1)=﹣(﹣1﹣a)=a+1,

则g(a)≤﹣2+1=﹣1,

故g(a)的最大值为﹣1;

②﹣2<a≤﹣1时,对称轴x= ,函数f(x)在( ,﹣ )上单调递增,

在[﹣1, ]单调递减;

∴f(x)的最小值是f( )=﹣

则g(a)≤﹣

故g(a)的最大值为﹣


(3)解:a>0,函数f(x)=x|x﹣a|的图象可由f(x)=x|x|的图象右移a个单位得到.

而f(x)=x|x|= ,x>0时递增,x<0时递增,且f(x)的图象连续,

则函数f(x)=x|x﹣a|在[0,3]递增,

即有|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xn1)﹣f(xn)|=

化为﹣(f(x1)﹣f(x2)+f(x2)﹣f(x3)+…+f(xn1)﹣f(xn))=

即﹣(f(0)﹣f(3))=

则3|3﹣a|﹣0=

解得a=

则实数a的取值为{ }


【解析】(1)由奇函数的定义可得f(﹣1)+f(1)=0,解得a=0,即可得到f(x)的解析式;(2)化简f(x),对a讨论,①a≤﹣2时,②﹣2<a≤﹣1时,由二次函数对称轴,结合单调性即可得到最值;(3)a>0,函数f(x)=x|x﹣a|的图象可由f(x)=x|x|的图象右移a个单位得到.判断f(x)=x|x|在R上递增,可得函数f(x)=x|x﹣a|在[0,3]递增,去掉绝对值,化简整理计算即可得到a的取值.
【考点精析】解答此题的关键在于理解函数的最值及其几何意义的相关知识,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值,以及对函数的奇偶性的理解,了解偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大小;
(2)若 ,求b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在(﹣44)上的奇函数,满足f2)=1,当﹣4x≤0时,有fx)=

1)求实数ab的值;

2)若fm+1+>0.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1 , x2 , 求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1 , l2之间,l∥l1 , l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧 的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2 , 则函数y=f(x)的图象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC30°BM⊥ACAC 于点 MEA⊥平面ABCFC//EAAC4EA3FC1

1)证明:EM⊥BF

2)求平面 BEF 与平面ABC 所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的,则输出的( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

同步练习册答案