精英家教网 > 高中数学 > 题目详情
8.(1)化简:($\frac{b}{2{a}^{2}}$)${\;}^{3}÷(\frac{2{b}^{2}}{3a})^{0}×(-\frac{b}{a})^{-3}$;
(2)若a>0,b>0,化简:$\frac{(2{a}^{\frac{2}{3}}{b}^{\frac{1}{2}})•(-6{a}^{\frac{1}{2}}{b}^{\frac{1}{3}})}{-3{a}^{\frac{1}{6}}{b}^{\frac{5}{6}}}-(4a-1)$.

分析 (1)(2)利用指数的运算法则即可得出.

解答 解:(1)原式=$\frac{{b}^{3}}{8{a}^{6}}×1×(-1)×\frac{{a}^{3}}{{b}^{3}}$=-$\frac{1}{8{a}^{3}}$.
(2)原式=$\frac{2×(-6)}{-3}$${a}^{\frac{2}{3}+\frac{1}{2}-\frac{1}{6}}$${b}^{\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}$-(4a-1)
=4a-(4a-1)
=1.

点评 本题考查了指数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn为{an}的前n项和.
(1)求an和Sn
(2)设bn=log3a1+log3a2+…+log3an,求数列bn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,侧棱长为2a的正三棱柱的左视图的面积为$\sqrt{3}$a2,则该正三棱柱的侧面积为(  )
A.3a2B.4a2C.6a2D.8a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.P为边长为2的正三角形内(不包括边界)一点,P到三角形三边距离分别为a、b、c,则ab+bc+ca取值范围是(  )
A.(0,1]B.(0,2)C.$({0,2\sqrt{3}})$D.(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=30.2,b=0.2-3,c=(-3)0.2,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x,y满足不等式$\left\{\begin{array}{l}{x-y≥0}\\{x+y-3≥0}\\{x≤3}\end{array}\right.$,则函数z=x+3y取得最大值是(  )
A.12B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.f(x)=ax2+2(a-1)x+2在(-∞,4]上单调递减,则a的取值范围是(  )
A.$a≤\frac{1}{5}$B.$a≥\frac{1}{5}$C.$0<a≤\frac{1}{5}$D.$0≤a≤\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=axlnx,a∈R,若f′(e)=3,则a的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,A是两条平行直线之间的一定点,且点A到两平行直线的距离分别为AM=1,AN=$\sqrt{2}$,设△ABC,AC⊥AB,且顶点B、C分别在两平行直线上运动,则
(1)△ABC面积的最小值为$\sqrt{2}$;
(2)$\frac{1}{AB}+\frac{{\sqrt{2}}}{AC}$的最大值为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案