精英家教网 > 高中数学 > 题目详情
2.下列函数中既是奇函数,又在区间(-1,1)上是增函数的为(  )
A.y=|x+1|B.y=sinxC.y=2x+2-xD.y=lnx

分析 根据奇函数、偶函数的定义,以及正弦函数的单调性即可判断每个选项的正误,从而找出正确选项.

解答 解:A.x=-1时,y=0;
x=1时,y=2;
∴函数y=|x+1|不是奇函数;
∴该选项错误;
B.y=sinx为奇函数,且在(-1,1)上是增函数;
∴该选项正确;
C.y=2x+2-x为偶函数,不是奇函数;
∴该选项错误;
D.y=lnx为非奇非偶函数;
∴该选项错误.
故选B.

点评 考查奇函数和偶函数的定义,以及对数函数的奇偶性,正弦函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

设向量

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ax3+lnx在区间(0,+∞)上不是单调函数,则a的取值范围是(  )
A.(-1,1)B.(-1,2)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=-$\frac{2}{x}$的单调增区间为(  )
A.[0,+∞)B.(-∞,0)C.(-∞,0),(0,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a,b满足$\frac{1}{a}+\frac{4}{b}=\sqrt{ab}$,则ab的最小值为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知经过P(4,-2),Q(-1,3)两点的圆C半径小于5,且在y轴上截得的线段长为$4\sqrt{3}$,
(I)求圆C的方程;
(II)已知直线l∥PQ,若l与圆C交于A,B两点,且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.要利用现有的两面残墙,呈直角三角形墙ADG和矩形墙DCFG搭建成一个暖棚(如图所示),所立柱子EB垂直于暖棚底面ABCD,其余四面计划用薄膜覆盖,已知底面ABCD是边长为2$\sqrt{6}$cm的正方形,且GD=2m,EB=1m.
(1)求二面角E-GF-C的大小(结果用反三角形式表示);
(2)求直杆GE的长度;
(3)覆盖三角形AEG,至少需要多少面积的薄膜(结果精确到0.1m2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB.
(1)证明:平面AEF⊥平面ACC1A1
(2)若AA1=3,求直线AB与平面AEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$与$\overrightarrow b$共线,则x=-2.

查看答案和解析>>

同步练习册答案