【题目】已知函数f(x)是定义在[-1,1]上的奇函数,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
【答案】(1)详见解析(2)不等式的解集为[0,1].
【解析】试题分析:(1)先根据奇函数定义求 上解析式,最后根据分段函数形式写函数(2)根据分段函数单调性可化简不等式为二次不等式,与定义域限制条件联立方程组,解得不等式解集
试题解析:(1)设-1≤x≤0,则0≤-x≤1,∴f(-x)=2-x+ln(1-x)-1=+ln(1-x)-1
又f(x)是奇函数,∴f(-x)=-f(x),
f(x)=-f(-x)=--ln(1-x)+1
∴f(x)= f(x)在[-1,1]上是增函数.
(2)∵f(x)在[-1,1]上是增函数,
由已知得:f(2x-1)≥f(x2-1),
等价于 .
∴0≤x≤1,∴不等式的解集为[0,1].
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=-f′(0)ex+2x,点P为曲线y=f(x)在点(0,f(0))处的切线l上的一点,点Q在曲线y=ex上,则|PQ|的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
(参考公式和计算结果:
, , , )
(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求的值,并估计的预报值.
(2)现准备勘探新井,若通过1,3,5,7号并计算出的, 的值(, 精确到0.01)相比于(1)中的, ,值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(3)设出油量与勘探深度的比值不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是双曲线的左右焦点,以为直径的圆与双曲线的一条渐近线交于点,与双曲线交于点,且均在第一象限,当直线时,双曲线的离心率为,若函数,则()
A. 1 B. C. 2 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如下表:
理财金额 | 万元 | 万元 | 万元 |
乙理财相应金额的概率 | |||
丙理财相应金额的概率 |
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为元,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分条件,求实数m的取值范围;
(2)若是 成立的充分不必要条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正方体ABCD-A1B1C1D1中,点P在线段AD1上运动,给出以下命题:
①异面直线C1P与B1C所成的角为定值;
②二面角P-BC1-D的大小为定值;
③三棱锥D-BPC1的体积为定值;
④异面直线A1P与BC1间的距离为定值.
其中真命题的个数为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com