精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线,直线.

(1)求曲线和直线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线相交于两点,求的值.

【答案】(1);(2)17

【解析】

1)将直线的极坐标方程先利用两角和的正弦公式展开,然后利用代入直线和曲线的极坐标方程,即可得出直线和曲线的普通方程;

2)由直线的普通方程得出该直线的倾斜角为,将直线的方程表示为参数方程

为参数),并将直线的参数方程与曲线的普通方程联立,得到关于的二次方程,列出韦达定理,然后代入可得出答案。

1)由曲线得直角坐标方程为

的直角坐标方程为:.

由直线展开的

2)由(1)得直线的倾斜角为.

所以的参数方程为为参数),

代入曲线得:.

设交点所对应的参数分别为,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x3(a0,且a≠1)

1)讨论f(x)的奇偶性;

2)求a的取值范围,使f(x)0在定义域上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x,且此函数的图象过点(15).

1)求实数m的值并判断fx)的奇偶性;

2)判断函数fx)在[2,+)上的单调性,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体中,

求两条异面直线所成角的余弦值;

求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部门为了解人们对“延迟退休年龄政策”的支持度,随机调查了人,其中男性人.调查发现持不支持态度的有人,其中男性占.分析这个持不支持态度的样本的年龄和性别结构,绘制等高条形图如图所示.

(1)在持不支持态度的人中,周岁及以上的男女比例是多少?

(2)调查数据显示,个持支持态度的人中有人年龄在周岁以下.填写下面的列联表,问能否有的把握认为年龄是否在周岁以下与对“延迟退休年龄政策”的态度有关.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.

(1)求甲、乙两名学生共答对2个问题的概率.

(2)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为实常数)

1)当时,作出的图象,并写出它的单调递增区间;

2)设在区间的最小值为,求的表达式;

3)已知函数的情况下:其在区间单调递减,在区间单调递增.,若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:①对于独立性检验,的值越大,说明两事件相关程度越大;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程中,,则;④通过回归直线及回归系数,可以精确反映变量的取值和变化趋势,其中正确的个数是(

A.B.C.D.

查看答案和解析>>

同步练习册答案