精英家教网 > 高中数学 > 题目详情

【题目】如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?

【答案】
解:由题意知AB=5(3+)海里,
∠DBA=90°﹣60°=30°,∠DAB=90°﹣45°=45°,
∴∠ADB=180°﹣(45°+30°)=105°,
在△ADB中,有正弦定理得=
∴DB===10
又在△DBC中,∠DBC=60°
DC2=DB2+BC2﹣2×DB×BC×cos60°=900
∴DC=30
∴救援船到达D点需要的时间为=1(小时)
答:该救援船到达D点需要1小时.

【解析】先根据内角和求得∠DAB和∠DBA,再求得∠ADB;在△ADB中利用正弦定理求得DB的长,然后利用里程除以速度即可求得时间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:

产品
资源

甲产品
(每吨)

乙产品
(每吨)

资源限额
(每天)

煤(t

9

4

360

电力(kw·h

4

5

200

劳力(个)

3

10

300

利润(万元)

7

12


问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图空间四边形ABCD,E、F、G、H分别为AB、AD、CB、CD的中点且AC=BD,AC⊥BD,试判断四边形EFGH的形状,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设多个分支机构,需要国内公司外派大量后、后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从后和后的员工中随机调查了位,得到数据如下表:

愿意被外派

不愿意被外派

合计

合计

/p>

(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;

(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排名参与调查的后、后员工参加.后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为后员工中有愿意被外派的人和不愿意被外派的人报名参加,从中随机选出人,记选到愿意被外派的人数为,求的概率

参考数据:

(参考公式:,其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,D为BC边上一点,BC=3BD,AD= , ∠ADB=135°.若AC=AB,则BD=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不同直线m,n和不同平面α,β,给出下列命题:
, ② , ③m,n异面,④
其中假命题有:(  )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=3sin(ωx+φ)(ω>0,﹣<φ<)的图象关于直线x=对称,它的周期是π,则以下结论正确的个数(  )
(1)f(x)的图象过点(0,
(2)f(x)的一个对称中心是(,0)
(3)f(x)在[,]上是减函数
(4)将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 垂直于底面 分别为 的中点.

(Ⅰ)求证:

(Ⅱ)求四棱锥的体积和截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

同步练习册答案