精英家教网 > 高中数学 > 题目详情
4.若函数$f(x)=\frac{x}{lnx}$在区间(1,m)上递减,则m的最大值为(  )
A.eB.2C.e2D.$\sqrt{e}$

分析 求出导函数,利用导函数的符号,列出不等式求解即可.

解答 解:令$f′(x)=\frac{lnx-1}{{{{({lnx})}^2}}}=0$得x=e;当x>1时,令f′(x)<0得1<x<e,
∴mmax=e.
故选:A.

点评 本题考查函数的导数的应用,考查函数的单调性以及最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.来自英、法、日、德的甲、乙、丙、丁四位客人,刚好碰在一起,他们除懂本国语言外,每天还会说其他三国语言的一种,有一种语言是三人都会说的,但没有一种语言人人都懂,现知道:
①甲是日本人,丁不会说日语,但他俩都能自由交谈;
②四人中没有一个人既能用日语交谈,又能用法语交谈;
③甲、乙、丙、丁交谈时,找不到共同语言沟通;
④乙不会说英语,当甲与丙交谈时,他都能做翻译.针对他们懂的语言
正确的推理是(  )
A.甲日德、乙法德、丙英法、丁英德B.甲日英、乙日德、丙德法、丁日英
C.甲日德、乙法德、丙英德、丁英德D.甲日法、乙英德、丙法德、丁法英

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\int_1^a{(2x+\frac{1}{x})}dx$=ln3+8,则a的值是(  )
A.6B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=tanωx(ω>0)的图象上的相邻两支曲线截直线y=1所得的线段长为$\frac{π}{3}$.则ω的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.从混有5张假币的20张50元人民币中任意抽取2张,将其中1张在验钞机上检验发现是假币,则这两张都是假币的概率为$\frac{2}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$|{\overrightarrow a}|=6\sqrt{3},|{\overrightarrow b}|=\frac{1}{3}$,且$\overrightarrow a•\overrightarrow b=-3$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,B=45°,c=$2\sqrt{2}$,b=$\frac{{4\sqrt{3}}}{3}$,则A等于(  )
A.60°B.75°C.15°或75°D.75°或105°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平行四边形ABCD中,AB=2,BC=$\sqrt{2}$,∠DAB=45°,点E为BC的中点,$\overrightarrow{FC}$=3$\overrightarrow{DF}$,则$\overrightarrow{AE}$•$\overrightarrow{BF}$的值是(  )
A.-1B.-$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在棱长为2的正方体△ABCD-A1B1C1D1中,M、N分别是A1B1、CD的中点,则点B到截面AMC1N的距离为(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{6}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

同步练习册答案