精英家教网 > 高中数学 > 题目详情
把边长为a的正△ABC沿高线AD折成60°的二面角,这时A到边BC的距离是(  )
A.
15
4
a
B.
6
3
a
C.
13
4
a
D.
3
2
a
如图,因为AD是正△ABC的高线,所以∠BDC即为二面角的平面角,即∠BDC=60°,

又因为△ABC是边长为a的正三角形,D是边BC的中点,
所以△BDC为正三角形,并且CD=BD=BC=
a
2

过D作DO垂直于BC于O,
所以O是BC的中点,连接AO.
因为AD⊥底面BDC,所以AD⊥BC,
又因为DO⊥BC,并且AD∩DO=D,
所以BC⊥面ADO,所以BC⊥AO,即AO即为点A到BC的距离.
由题意可得:正三角形ABC的边长为a,所以AD=
3
2
a

因为在正三角形BDC中,边长为
a
2
,所以BC边上的高DO=
3
4
a

所以在直角三角形ADO中,可得AO=
(
3
2
a)
2
+(
3
4
a)
2
=
15
4
a

故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,BC1与平面BDD1B1所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,△ABC是等腰直角三角形∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE
(Ⅰ)在棱A′B上找一点F,使EF平面A′CD;
(Ⅱ)当四棱锥A'-BCDE体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=2PA,D、E分别是棱AB,AC上的动点,且AD=CE,连接DE,当三棱锥P-ADE体积最大时,平面PDE和平面PBC所成二面角的余弦值为(  )
A.
1
2
B.
3
2
C.
21
14
D.
5
7
14

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,AC=2PA=4,且平面PAC⊥平面ABC.
(1)求三棱锥P-ABC的体积;
(2)求二面角B-AP-C的余弦值;
(3)判断在线段AC上是否存在点Q,使得△PQB为直角三角形?若存在,找出所有符合要求的点Q,并求
AQ
QC
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四面体(所有面都是等边三角形的三棱锥)相邻两侧面所成二面角的余弦值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折成一个直二面角,则此时BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设一个正三棱锥的侧面与底面所成的角为α,相邻两个侧面所成的角为β,那么两个角α和β的三角函数间的关系是(  )
A.2cos2α+3cosβ=1B.2cosα+3cos2β=1
C.3cos2α+2cosβ=1D.3cosα+2cos2β=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,设E为PC中点,点F在线段PD上且PF=2FD.
(Ⅰ)求证:BE平面ACF;
(Ⅱ)设二面角A-CF-D的大小为θ,若|cosθ|=
42
14
,求PA的长.

查看答案和解析>>

同步练习册答案