精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的离心率是,左右焦点分别为,过点的动直线与椭圆相交于两点,当直线时,的周长为.

1)求椭圆的方程;

2)当时,求直线方程;

3)已知点,直线的斜率分别为.问是否存在实数,使得恒成立?

【答案】(1) (2) (3)存在,

【解析】

1)由焦点三角形的周长特点可求出值,再结合椭圆离心率是,可求出,进而求得椭圆标准方程;

2),设直线方程为,可联立直线方程和椭圆标准方程,得出两根和与积的表达式,再结合,代换出的关系式;

3)先用必要性探路,找特殊情况,当轴可知,此时存在使得成立,根据题意和斜率定义表示出,结合(2)中韦达定理即可得证

1)由椭圆定义知的周长为

所以,所以

又离心率,所以,所以

所以椭圆的方程为.

2)当轴,

所以可设

,消去

所以

因为

所以,即代入化简得

所以

解得

所以直线方程为:

3)当轴可知,此时存在使得成立,

下面证明当恒成立

因为

所以恒成立

即存在,使得恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)已知,若函数没有零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列的每一项都不等于零,且对于任意的,都有为常数),则称数列为“类等比数列”;已知数列满足:,对于任意的,都有

1)求证:数列是“类等比数列”;

2)若是单调递减数列,求实数的取值范围;

3)若,求数列的前项之积取最大值时的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的销售额与广告费用之间的关系如下表:

(单位:万元)

0

1

2

3

4

(单位:万元)

10

15

30

35

若根据表中的数据用最小二乘法求得的回归直线方程为,则下列说法中错误的是(

A.产品的销售额与广告费用成正相关

B.该回归直线过点

C.当广告费用为10万元时,销售额一定为74万元

D.的值是20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某款冰淇淋的包装盒为圆台,盒盖为直径为的圆形纸片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一个,假定每个冰淇淋球都是半径为的球体,三个冰淇淋球两两相切,且都与冰淇淋盒盖、盒底和盒子侧面的曲面相切,则冰淇淋盒的体积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和为,对于任意正整数mn及正常数q,当时,恒成立,若存在常数,使得为等差数列,则常数c的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市《城市总体规划(年)》提出到年实现“分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身个方面构建“分钟社区生活圈”指标体系,并依据“分钟社区生活圈”指数高低将小区划分为:优质小区(指数为)、良好小区(指数为)、中等小区(指数为)以及待改进小区(指数为个等级.下面是三个小区个方面指标的调查数据:

注:每个小区“分钟社区生活圈”指数,其中为该小区四个方面的权重,为该小区四个方面的指标值(小区每一个方面的指标值为之间的一个数值).

现有个小区的“分钟社区生活圈”指数数据,整理得到如下频数分布表:

分组

频数

)分别判断三个小区是否是优质小区,并说明理由;

)对这个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取个小区进行调查,若在抽取的个小区中再随机地选取个小区做深入调查,记这个小区中为优质小区的个数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:函数|fa|2,命题Q:集合A={x|x2+a+2x+1=0xR}B={x|x0}AB=

1)分别求命题PQ为真命题时的实数a的取值范围;

2)当实数a取何范围时,命题PQ中有且仅有一个为真命题;

3)设PQ皆为真时a的取值范围为集合S,若RTS,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

同步练习册答案