精英家教网 > 高中数学 > 题目详情
若函数y=cos(3x+
π
3
)的最小正周期为T,则函数y=3sin(2x-T)的图象(  )
A、在区间[
π
12
12
]上单调递减
B、在区间[
π
12
12
]上单调递增
C、在区间[-
π
6
π
3
]上单调递减
D、在区间[-
π
6
π
3
]上单调递增
考点:余弦函数的图象,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:首先根据函数的周期求出函数的解析式,进一步利用整体思想求出函数的单调区间.
解答: 解:函数y=cos(3x+
π
3
)的最小正周期为T,
则:T=
3

所以:函数y=3sin(2x-
3
)的单调递增区间为:
令:-
π
2
+2kπ≤2x-
3
π
2
+2kπ
(k∈Z)
解得:
π
12
+kπ≤x≤
12
+kπ

所以函数的单调递增区间为:x∈[
π
12
+kπ,
12
+kπ]
(k∈Z)
当k=0时,函数的递增区间为:x∈[
π
12
12
]

函数的单调递减区间为:
令:
π
2
+2kπ≤2x-
3
2
+2kπ
(k∈Z)
解得:
12
+kπ≤x≤
13π
12
+kπ

所以函数的递减区间为:x∈[
12
+kπ,
13π
12
+kπ]
(k∈Z)
故选:B
点评:本题考查的知识要点:三角函数的周期的应用,三角函数的单调性的应用.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)双曲线与椭圆
x2
27
+
y2
36
=1有相同焦点,且经过点(
15
,4),求其方程;
(Ⅱ)求焦点在x-2y-4=0上的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=sin(2x-
π
4
)的图象,可由函数y=sinx(  )
A、向右平移
π
4
个单位长度,再将图象上所有点横坐标变为原来的2倍,纵坐标不变
B、将图象上所有点横坐标变为原来的2倍,纵坐标不变,再向右平移
π
4
个单位长度
C、向右平移
π
8
个单位长度,再将图象上所有点横坐标变为原来的
1
2
,纵坐标不变
D、将图象上所有点横坐标变为原来的
1
2
,纵坐标不变,再向右平移
π
8
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(a,6)到直线3x-4y=2的距离为4,则a=(  )
A、2
B、
46
3
C、2或
46
3
D、14或
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

某学习小组在暑期社会实践活动中,通过对某商场一种品牌服装销售情况的调查发现:该服装在过去的一个月内(以30天计)每件的销售价格P(x)(百元)与时间x(天)的函数关系近似满足P(x)=1+
k
x
(k为正常数),日销售量Q(x)(件)与时间x(天)的部分数据如下表所示:
(天)10202530
(件)110120125120
已知第10天的日销售收入为121(百元).
(Ⅰ)求k的值;
(Ⅱ)给出以下三种函数模型①Q(x)=ax+b,②Q(x)=a|x-25|+b,③Q(x)=a•bx,其中a≠0,b>0且b≠1.请你根据上表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(Ⅲ)x取何值时,该服装的日销售收入为121百元?(1≤x≤30,x∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(m,1),
b
=(m2,2),若存在A∈R,使得
a
b
=
0
,则m=(  )
A、0B、2C、0或2D、0或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内三点A(3,0)、B(0,3)、C(cosα,sinα),若
AC
BC
=-1,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数φ(x)=
a
x+1
,a为正常数,若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2+5
(  )
A、是奇函数但不是偶函数
B、是偶函数但不是奇函数
C、既是奇函数又是偶函数
D、既不是奇函数也不是偶函数

查看答案和解析>>

同步练习册答案