【题目】过双曲线的右焦点且倾斜角为的直线与圆相切,则该双曲线的离心率为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】设定义域为R的函数.
(1)在平面直角坐标系中作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(2)若方程f(x)+5a=0有两个解,求出a的取值范围(不需严格证明,简单说明即可);
(3)设定义域为R的函数g(x)为偶函数,且当x≥0时,g(x)=f(x),求g(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点和上的点,满足, .
(1)当点在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点, , 是坐标原点,且时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如下图所示的频率分布直方图.
(I)写出a的值;
(II)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
(III)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X表示其中初中生的人数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点与抛物线的焦点重合,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆的右顶点,过点作两条直线分别与椭圆交于另一点,若直线的斜率之积为,求证:直线恒过一个定点,并求出这个定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点,右焦点分别为,右准线为,
(1)若直线上不存在点,使为等腰三角形,求椭圆离心率的取值范围;
(2)在(1)的条件下,当取最大值时,点坐标为,设是椭圆上的三点,且,求:以线段的中心为原点,过两点的圆方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com