精英家教网 > 高中数学 > 题目详情
14.在等差数列{an}中,已知前20项之和S20=170,则a5+a16=17.

分析 利用等差数列的通项公式和前n项和公式求解.

解答 解:∵在等差数列{an}中,前20项之和S20=170,
∴S20=$\frac{20}{2}({a}_{5}+{a}_{16})$=10(a5+a16)=170,
∴a5+a16=17.
故答案为:17.

点评 本题考查等差数列中两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{a•{2}^{x},x≥0}\\{lo{g}_{2}(-x+3),x<0}\end{array}\right.$(a∈R),若f[f(-1)]=1,则a=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(Ⅰ)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(Ⅱ)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<l≤2,试比较b、c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过抛物线y2=$\frac{1}{2}$x的焦点作倾斜角为30°的直线与抛物线交于P、Q两点,则|PQ|=(  )
A.$\sqrt{3}$B.2C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-ax-3(a≠0)
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对于任意的a∈[1,2],若函数g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]在区间(a,3)上有最值,求实数m的取值范围;
(Ⅲ)求证:ln($\frac{1}{{2}^{2}}$+1)+ln($\frac{1}{{3}^{2}}$+1)+ln($\frac{1}{{4}^{2}}$+1)+…+ln($\frac{1}{{n}^{2}}$+1)<$\frac{2}{3}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对某杂志社一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图),则该样本的中位数、众数分别为(  )
A.47、45B.45、47C.46、45D.45、46

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),且f(f(x))=16x+5
(1)求f(x)的解析式;
(2)若g(x)在(1,+∞)上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图圆柱的底面周长为4π,高为2,圆锥的底面半径是1,则该几何体的体积为$\frac{22π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,足球门左右门柱分别立在A、B处,假定足球门宽度AB为7米,在距离右门柱15米的C处,一球员带球沿与球门线AC成28°角的CD方向以平均每秒6.5米的速度推进,2秒后到达D处射门.问:
(1)D点到左右门柱的距离分别为多少米?
(2)此时射门张角θ为多少?(注:cos28°≈$\frac{23}{26}$)

查看答案和解析>>

同步练习册答案