5£®ÒÑÖªÍÖÔ²¦££º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£©µÄÓÒ½¹µãΪ£¨2$\sqrt{2}$£¬0£©£¬ÇÒ¹ýµãc£¾1£®
£¨¢ñ£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=x+m£¨m¡ÊR£©ÓëÍÖÔ²¦£½»ÓÚ²»Í¬Á½µãA¡¢B£¬ÇÒ|AB|=3$\sqrt{2}$£®ÈôµãP£¨x0£¬2£©Âú×ã|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|£¬Çóx0µÄÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾Ýa£¬cµÄÖµ£¬Çó³öb£¬´Ó¶øÇó³öÍÖÔ²µÄ·½³Ì¼´¿É£»
£¨¢ò£©ÁªÁ¢Ö±ÏߺÍÍÖÔ²µÄ·½³Ì£¬¸ù¾Ý½»µãµÄ¸öÊýÅжÏmµÄ·¶Î§£¬ÉèABµÄÖеãΪE£¨x0£¬y0£©£¬Çó³öx0=$\frac{{{x}_{1}+x}_{2}}{2}$=-$\frac{3m}{4}$£¬y0=x0+m=$\frac{m}{4}$£¬µ±m=2ʱ£¬Çó³öÖ±Ïß·½³ÌÊÇy=-x-1£¬Çó³ö¶ÔÓ¦µÄxµÄÖµ£¬µ±m=-2ʱ£¬Çó³öÖ±Ïß·½³ÌÊÇy=-x+1£¬Çó³ö¶ÔÓ¦µÄxµÄÖµ¼´¿É£®

½â´ð ½â£º£¨¢ñ£©ÓÉÒÑÖªµÃa=2$\sqrt{3}$£¬ÓÖ$c=2\sqrt{2}$
¡àb2=a2-c2=4
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©ÓÉ$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£®µÃ4x2+6mx+3m2-12=0  ¢Ù
¡ßÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬Á½µãA¡¢B£¬¡à¡÷=36m2-16£¨3m2-12£©£¾0£¬
µÃm2£¼16£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸ù£¬
Ôòx1+x2=-$\frac{3m}{2}$£¬${x_1}•{x_2}=\frac{{3{m^2}-12}}{4}$£®
¡à$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{2}¡Á\sqrt{\frac{9}{4}{m^2}-£¨3{m^2}-12£©}=\sqrt{2}¡Á\sqrt{-\frac{3}{4}{m^2}+12}$£®
ÓÖÓÉ$|{AB}|=3\sqrt{2}$£¬µÃ$-\frac{3}{4}{m^2}+12=9$£¬½âÖ®y=-x+1
¾ÝÌâÒâÖª£¬µãPΪÏ߶ÎABµÄÖд¹ÏßÓëÖ±Ïßy=2µÄ½»µã£®
ÉèABµÄÖеãΪE£¨x0£¬y0£©£¬Ôòx0=$\frac{{{x}_{1}+x}_{2}}{2}$=-$\frac{3m}{4}$£¬y0=x0+m=$\frac{m}{4}$£¬
?µ±m=2ʱ£¬$E£¨-\frac{3}{2}£¬\frac{1}{2}£©$
¡à´Ëʱ£¬Ï߶ÎABµÄÖд¹Ïß·½³ÌΪy-$\frac{1}{2}$=-£¨x+$\frac{3}{2}$£©£¬¼´y=-x-1£¬
Áîy=2£¬µÃx0=-3£¬
?µ±m=-2ʱ£¬E£¨$\frac{3}{2}$£¬-$\frac{1}{2}$£©£¬
¡à´Ëʱ£¬Ï߶Îm=1µÄÖд¹Ïß·½³ÌΪy+$\frac{1}{2}$=-£¨x-$\frac{3}{2}$£©£¬¼´y=-x+1£¬
Áî$£¨0£¬\frac{1}{2}£©$£¬µÃx0=-1£®

µãÆÀ ±¾Ì⿼²éÁËÇóÍÖÔ²µÄ·½³ÌÎÊÌ⣬¿¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØϵÒÔ¼°Î¤´ï¶¨ÀíµÄÓ¦Óá¢Öеã×ø±ê¹«Ê½£¬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®½«½Ç¦ÁµÄÖÕ±ß˳ʱÕëÐýת$\frac{¦Ð}{2}$£¬ÔòËüÓëÒÔÔ­µãΪԲÐÄ£¬1Ϊ°ë¾¶µÄµ¥Î»Ô²µÄ½»µãµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨cos¦Á£¬sin¦Á£©B£®£¨cos¦Á£¬-sin¦Á£©C£®£¨sin¦Á£¬-cos¦Á£©D£®£¨sin¦Á£¬cos¦Á£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¡÷ABCÖУ¬µãDΪBCÖе㣬AB=2£¬AC=4£®
£¨1£©ÈôB=$\frac{¦Ð}{3}$£¬ÇósinA£»
£¨2£©ÈôAD=$\sqrt{3}$£¬ÇóBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ex£¨x2+ax+a£©£¬ÊµÊýÊdz£Êý£®
£¨1£©Èôa=2£¬º¯Êýy=f£¨x£©µÄͼÏóÉÏÊÇ·ñ´æÔÚÁ½ÌõÏ໥´¹Ö±µÄÇÐÏߣ¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©Èôy=f£¨x£©ÔÚ[a£¬+¡Þ£©ÉÏÓÐÁãµã£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=£¨{a-1}£©lnx-\frac{a}{2}{x^2}+x£¨{a¡ÊR}£©£¬g£¨x£©=-\frac{1}{3}{x^3}-x+£¨{a-1}£©lnx$£®
£¨1£©Èô$a¡Ü\frac{1}{2}$£¬ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èô¹ýµã$£¨{0£¬-\frac{1}{3}}£©$¿É×öº¯Êýy=g£¨x£©-f£¨x£©£¨x£¾0£©Í¼ÏóµÄÁ½Ìõ²»Í¬ÇÐÏߣ¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®»¯¼òÓëÇóÖµ£º
£¨1£©2£¨lg$\sqrt{2}$£©2+$\frac{1}{2}$lg2•lg5+$\sqrt{£¨lg\sqrt{2}£©^{2}-lg2+1}$£»
£¨2£©£¨2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$£©£¨-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$£©¡Â£¨-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÄÐÉú4Ãû£¬Å®Éú3ÃûÅųÉÒ»ÅÅ£¬ÈôÈýÃûÅ®Éú˳ÐòÒ»¶¨£¬ÔòÓÐ840ÖÖ²»Í¬µÄÅÅ·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÕýËÄÀâ׶µÄµ×Ãæ±ß³¤Îª1£¬¸ßΪ1£¬ÔòÕâ¸öÕýËÄÀâ׶µÄÍâ½ÓÇòµÄ±íÃæ»ýΪ$\frac{9¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¶¨ÒåÔÚ£¨0£¬$\frac{¦Ð}{2}$£©µÄº¯Êýf£¨x£©=8sinx-tanxµÄ×î´óֵΪ$3\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸