【答案】
分析:由题设知不等式
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/0.png)
≤
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/1.png)
的解集是[-4,0],求a的取值范围,可将问题转化为函数f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/3.png)
≤0在[-4,0]恒成立,由此可以借助导数求出函数在[-4,0]上的最大值,令最大值小于等于0即可解出a的取值范围,选出正确选项
解答:解:由题意,可构造函数f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/5.png)
∴f′(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/6.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/7.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/8.png)
-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/9.png)
令f′(x)>0解得x>-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/10.png)
或x<-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/11.png)
,令f′(x)<0解得-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/12.png)
<x<-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/13.png)
如下表
x | -4 | ![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/14.png) | -![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/15.png) | ![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/16.png) | -![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/17.png) | ![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/18.png) | |
f’(x) | | + | | - | | + | |
单调性 | | 增 | | 减 | | 增 | |
函数值 | - -1+a | ↑ | 极大值5+a | ↓ | 极小值 | ↑ | -1+a |
由表知,当函数的最大值是f(-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/20.png)
)=5+a
又不等式
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/21.png)
≤
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/22.png)
的解集是[-4,0],即在[-4,0],恒有f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183159224720222/SYS201310241831592247202006_DA/24.png)
≤0恒成立
故有5+a≤0恒成立,解得a≤-5
故选A
点评:本题考查利用函数恒成立证明不等式,将不等式证明的问题转化为函数恒成立问题解决是解本题的关键,也是求解本题的亮点,利用函数最大值小于等于0得出参数a所满足的不等式,是求解本题的手段,函数最值与恒成立问题结合是解决恒成立问题常用思路,题后应注意总结本题的解题脉络,本题考查了函数的思想,是函数最值的应用题