【题目】已知数列的各项均不为零.设数列的前n项和为Sn,数列的前n项和为Tn, 且 .
(1)求的值;
(2)证明:数列是等比数列;
(3)若对任意的恒成立,求实数的所有值.
【答案】(1),;(2)数列是以1为首项,为公比的等比数列;(3)0
【解析】
(1)令n=1,n=2列关于的方程求解即可;(2)因为, ①,②,②①得 ③
进一步有④,③④得,检验n=1 成立,即可证明是等比数列(3)由(2)将代入不等式,由对任意的恒成立,所以适合,讨论,当为奇数时恒成立,和,当为奇数时恒成立,通过证明,单调减,,即(*),说明上面两个不等式不恒成立,推得矛盾,即可求得只有合适
(1)因为,.
令,得,因为,所以.
令,得,即,
因为,所以.
(2)因为, ①
所以, ②
②①得,,
因为,所以,③
所以, ④
当时,③④得,,即,
因为,所以.
又由(1)知,,,所以,
所以数列是以1为首项,为公比的等比数列.
(3)由(2)知,.
因为对任意的,恒成立,
所以的值介于和之间.
因为对任意的恒成立,所以适合.
若,当为奇数时,恒成立,从而有恒成立.
记,因为,
所以,即,所以(*),
从而当时,有,所以不符.
若,当为奇数时,恒成立,从而有恒成立.
由(*)式知,当时,有,所以不符.
综上,实数的所有值为0.
科目:高中数学 来源: 题型:
【题目】已知圆O经过椭圆C:=1(a>b>0)的两个焦点以及两个顶点,且点(b,)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与圆O相切,与椭圆C交于M、N两点,且|MN|=,求直线l的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: , , , , , 后得到如图所示的频率分布直方图.
问:
(1)估计在40名读书者中年龄分布在的人数;
(2)求40名读书者年龄的平均数和中位数;
(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.
求证:(1)DE∥平面ABB1A1;
(2)BC1⊥平面A1B1C.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}前n项和为Sn,满足Sn+1=4an+2(n∈N+),且a1=1,
(1)若cn,求证:数列{cn}是等差数列.
(2)求数列{an}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径,,,D为半圆弧的中点,若异面直线BD和所成角的大小为.
(1)证明:平面;
(2)求该几何体的表面积和体积;
(3)求点D到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①一个命题的逆命题为真,它的否命题也一定为真;
②在中,“”是“三个角成等差数列”的充要条件.
③是的充要条件;
④命题“不等式x2+x-6>0的解为x<-3或x>2”的逆否命题是“若-3≤x≤2,则x2+x-6≤0”
以上说法中,判断错误的有___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com