精英家教网 > 高中数学 > 题目详情
14.已知f(x)的定义域为[a,b],且a+b>0,求F(x)=f(x)-f(-x)的定义域.

分析 根据题意可知a≤x≤b且a≤-x≤b,根据a+b>0,则b>-a>0,得到x的范围即得到F(x)的定义域.

解答 解:由于f(x)的定义域为x∈[a,b],
则要使F(x)=f(x)-f(-x)有意义,
x必满足$\left\{\begin{array}{l}{a≤x≤b}\\{a≤-x≤b}\end{array}\right.$,
又由a+b>0,则b>-a>0,
则F(x)的定义域为{x|a≤x≤-a}.

点评 考查学生理解函数定义域并会求函数定义域,以及会用取不等式的解集的方法解决数学问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.非空集合A={x|1≤x≤a},B={y|y=x+1,x∈A},C={y|y=x2,x∈A},若B∩C≠∅,则a的取值范围为a≥$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F2,M(x0,y0)(x0>0,y0>0)是双曲线C上的点,N(-x0,-y0),连接MF2并延长MF2交双曲线C于P,连接NF2,PN,若△NF2P是以∠NF2P为顶角的等腰直角三角形,则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±4xC.y=±$\frac{\sqrt{6}}{2}$xD.y=±$\frac{\sqrt{10}}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\frac{1}{1+x}$,g(x)=x2+2(x∈R).
(1)求f(x)的定义域;
(2)求f(2),g(2),f[g(2)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.确定集合A与集合B之间的关系:A={(x,y)|x+y=2,x∈N,y∈N},B={(2,0),(1,1),(0,2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解关于x的不等式x2-2ax+a<0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)满足3f(x)+f($\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\sqrt{x+2}$+$\sqrt{4-x}$的定义域为(  )
A.{x|x≤-1}B.{x|-2≤x≤4}C.{x|x≤-2或≥4}D.{x|x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x|+|x-1|
(1)若f(x-3)-x-10≥0,求实数x的取值范围;
(2)若关于x的不等式f(x-3)<m的解集不是空集,求实数m的取值范围.

查看答案和解析>>

同步练习册答案