精英家教网 > 高中数学 > 题目详情
1.设x0是函数f(x)=2x+x的零点,且x0∈(k,k+1),k∈Z,则k=-1.

分析 判断函数f(x)的单调性,利用函数零点判断条件进行判断即可得到结论.

解答 解:∵f(x)=2x+x,
∴函数f(x)为增函数,
f(0)=1>0,f(-1)=$\frac{1}{2}-1=-\frac{1}{2}$<0,
满足f(0)f(-1)<0,
则在(-1,0)内函数f(x)存在一个零点,
即x0∈(-1,0),
∵x0∈(k,k+1),
∴k=-1,
故答案为:-1

点评 本题主要考查函数零点和方程之间的关系,利用根的存在性定理进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系xOy中,已知∠α的顶点为原点O,其始边与x轴正方向重合,终边过两曲线y=$\sqrt{x+3}$和y=$\sqrt{1-x}$的交点,则cos2α+cot($\frac{3π}{2}$+α)=-$\frac{1}{3}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A,B分别是函数y=log3(9-x2)的定义域和值域,则A∩B=(  )
A.(-3,2)B.(-3,2]C.(0,2]D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{c}$+2$\overrightarrow{a}$|的取值范围是(  )
A.[1,3]B.[2$\sqrt{2}$,3]C.[$\frac{6\sqrt{5}}{5}$,2$\sqrt{2}$]D.[$\frac{6\sqrt{5}}{5}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{\sqrt{3}}}{2}$,原点到过点A(-a,0),B(0,b)
的直线的距离是$\frac{{4\sqrt{5}}}{5}$.
(1)求椭圆C的方程;
(2)设动直线l与两定直线l1:x-2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$a={(\frac{1}{2})^3},b={3^{\frac{1}{2}}},c={log_{\frac{1}{2}}}3$,则a,b,c之间的大小关系为(  )
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)求函数$f(x)=\frac{{\sqrt{5-x}}}{{{{log}_2}x-2}}$的定义域;
(2)求函数$f(x)={log_a}(-{x^2}+2x+3)$(a>0,且a≠1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过点P(3,4)的直线与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1只有一个交点,则该直线方程为x=3或3x-4y+7=0或3x+4y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\overrightarrow{AE}$+$\overrightarrow{ED}$=$\overrightarrow{AD}$,$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$.

查看答案和解析>>

同步练习册答案