精英家教网 > 高中数学 > 题目详情
15.给出一个算法:

根据以上算法,可求得f(-1)+f(3)的值为4.

分析 根据算法语句写出分段函数,再根据分段函数求出相应的函数值即可.

解答 解:根据算法语句知,该程序运行后输出
函数f(x)=$\left\{\begin{array}{l}{4x,x≤0}\\{{2}^{x},x>0}\end{array}\right.$,
所以f(-1)+f(3)=4×(-1)+23=4.
故答案为:4.

点评 本题主要考查了利用条件语句表示分段函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,2AB=3AC,∠A=$\frac{π}{3}$,∠BAC的平分线交边BC于点D,|AD|=1,则(  )
A.AB•AC=$\sqrt{2}$AB+ACB.AB+AC=$\sqrt{2}$AB•ACC.AB•AC=$\sqrt{3}$AB+ACD.AB+AC=$\sqrt{3}$AB•AC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x>1,则$\frac{1}{x}$<1”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.直线l:y=kx+1与双曲线C:2x2-y2=1.
(1)若直线与双曲线有且仅有一个公共点,求实数k的取值范围;
(2)若直线分别与双曲线的两支各有一个公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A,“第2次拿出的是白球”为事件B,则P(B|A)是(  )
A.$\frac{5}{8}$B.$\frac{5}{16}$C.$\frac{4}{7}$D.$\frac{5}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an},a1=1,an+1=an+2n,计算数列{an}的第100项.现已给出该问题算法的流程图(如图1所示)

(1)请在图1中判断框的A、B、C(其中A中用i的关系表示)处填上合适的语句,使之完成该问题的算法功能.
(2)根据流程图1补充完整程序语言(如图2)(即在D、E、F处填写合适的语句).
解:(将答案写在下面相应位置)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-kx+k(k∈R).
(1)试讨论函数y=f(x)的单调性;
(2)若该函数有两个不同的零点x1,x2试求实数k取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的奇函数,对任意x>0,都有f(x+4)=f(x),若f(-2)=2,则f(2 018)等于(  )
A.2 012B.2C.2 013D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列四个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$;
③设$\overrightarrow{{a}_{0}}$是单位向量,若$\overrightarrow{d}$∥$\overrightarrow{{a}_{0}}$,且|$\overrightarrow{d}$|=1,则$\overrightarrow{d}$=$\overrightarrow{{a}_{0}}$;
④$\overrightarrow{d}$=$\overrightarrow{b}$的充要条件是|$\overrightarrow{d}$=|$\overrightarrow{b}$|且$\overrightarrow{d}$∥$\overrightarrow{b}$.
其中假命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案