精英家教网 > 高中数学 > 题目详情
1.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π)
(1)tan(α+π)的值;
(2)cos(α-$\frac{π}{2}$)sin(α+$\frac{3π}{2}$)的值.

分析 (1)由题意和平方关系求出cosα,由$tanα=\frac{sinα}{cosα}$求出tanα,利用诱导公式化简可得tan(α+π)的值;
(2)根据诱导公式化简后,把值代入求解即可.

解答 解:(1)∵sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,则$tanα=\frac{sinα}{cosα}=-\frac{3}{4}$,
∴tan(α+π)=tanα=$-\frac{3}{4}$;
(2)由(1)得,
cos(α-$\frac{π}{2}$)sin(α+$\frac{3π}{2}$)=cos($\frac{π}{2}$-α)sin(α+$\frac{3π}{2}$)
=sinα(-cosα)=$\frac{3}{5}$×[-(-$\frac{4}{5}$)]=$\frac{12}{25}$.

点评 本题考查了诱导公式,同角三角函数的基本关系的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设函数f(x)在R上的导函数是f′(x),对?x∈R,f′(x)<x.若f(1-a)-f(a)≤$\frac{1}{2}$-a,则实数a的取值范围是a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA=$\frac{3\sqrt{5}}{5}$csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各角中与-$\frac{π}{4}$终边相同的是(  )
A.-$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{7π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知变量x,y之间的线性回归方程为y=-x+13,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是(  )
x681012
y6m32
A.可以预测,当x=9时,y=4B.该回归直线必过点(9,4)
C.m=4D.m=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆(x+2)2+y2=4与圆(x-2)2+(y-3)2=9的位置关系为(  )
A.外切B.相交C.内切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA及a的值;
(2)若b2+c2=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值.
(Ⅱ)若二面角P-BF-C的余弦值为$\frac{\sqrt{6}}{6}$,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|ax2-2x+1=0}
(1)若A中有两个元素,求a的取值范围;
(2)若A中至少有一个元素,求a的取值范围.

查看答案和解析>>

同步练习册答案