精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,不等式组
x≥0
y≥0
3x+4y-10≤0
所表示的平面区域是W,从区域W中随机取点P(x,y).
(1)若x,y∈Z,列出点P的所有可能的结果;
(2)若x,y∈R,求|OP|≤2的概率.
分析:(1)从x等于0开始,验证y的值,得到满足约束条件的坐标,验证完0再验证x等于1,依次整理得到所有的可能结果.
(2)得到所有的点对应的区域和满足条件的点对应的区域的面积,概率等于面积之比,得到要求的|OP|≤2的概率.
解答:解:(1)若x,y∈Z,则点P的个数共有8个,列举如下:(0,0),(1,0),(2,0),(3,0),
(0,1),(1,1),(2,1),(0,2).                
(2)若x,y∈R,则区域W的面积是μW=
1
2
×
10
3
×
5
2
=
25
6
.                
满足|OP|≤2的点P构成的区域为A={(x,y)|x≥0,y≥0,3x+4y-10≤0,x2+y2≤4}.
注意到直线3x+4y-10=0与圆x2+y2=4相切,
故|OP|≤2的概率为
μA
μW
=
π
25
6
=
25
点评:本题考查几何概型,本题解题的关键是做出试验发生包含的事件对应的图形的面积和满足条件的事件对应的面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案