分析 (1)由题意可以得到该二次函数的图象的顶点坐标为(2,-1),设解析式为y=a(x-2)2-1,结合f(1)+f(4)=3可得f(x)的解析式;
(2)若g(x)=f(x)-kx在区间(1,4)上不单调,则函数图象的对称轴x=$\frac{k+4}{2}$,满足1<$\frac{k+4}{2}$<4,解得实数k的取值范围.
解答 解:(1)∵二次函数y=f(x),当x=2时函数取最小值-1,
∴二次函数的图象的顶点坐标为(2,-1),
设解析式为y=a(x-2)2-1,(a>0),
∵f(1)+f(4)=a-1+4a-1=5a-2=3,
解得:a=1,
故y=(x-2)2-1=y=x2-4x+3;
(2)∵g(x)=f(x)-kx=x2-(k+4)x+3在区间(1,4)上不单调,
故1<$\frac{k+4}{2}$<4,
解得:-2<k<4,
即实数k的取值范围为(-2,4).
点评 本题考查的知识点是二次函数的图象和性质,函数解析式的求法,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:选择题
A. | f(x1)<0,f(x2)<0 | B. | f(x1)<0,f(x2)>0 | C. | f(x1)>0,f(x2)<0 | D. | f(x1)>0,f(x2)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1:2 | B. | 1:3 | C. | 1:$\sqrt{2}$ | D. | 1:4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-4,32] | B. | [12,21] | C. | [21,32] | D. | [12,32] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com