精英家教网 > 高中数学 > 题目详情
1.已知二次函数y=f(x),当x=2时函数取最小值-1,且f(1)+f(4)=3.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在区间(1,4)上不单调,求实数k的取值范围.

分析 (1)由题意可以得到该二次函数的图象的顶点坐标为(2,-1),设解析式为y=a(x-2)2-1,结合f(1)+f(4)=3可得f(x)的解析式;
(2)若g(x)=f(x)-kx在区间(1,4)上不单调,则函数图象的对称轴x=$\frac{k+4}{2}$,满足1<$\frac{k+4}{2}$<4,解得实数k的取值范围.

解答 解:(1)∵二次函数y=f(x),当x=2时函数取最小值-1,
∴二次函数的图象的顶点坐标为(2,-1),
设解析式为y=a(x-2)2-1,(a>0),
∵f(1)+f(4)=a-1+4a-1=5a-2=3,
解得:a=1,
故y=(x-2)2-1=y=x2-4x+3;
(2)∵g(x)=f(x)-kx=x2-(k+4)x+3在区间(1,4)上不单调,
故1<$\frac{k+4}{2}$<4,
解得:-2<k<4,
即实数k的取值范围为(-2,4).

点评 本题考查的知识点是二次函数的图象和性质,函数解析式的求法,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知x0是函数f(x)=ex-$\frac{1}{x-1}$的一个零点(其中e为自然对数的底数),若x1∈(1,x0),x2∈(x0,+∞),则(  )
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,三棱台ABC-A1B1C1中,A1B1:AB=1:2,则三棱锥B-A1B1C1与三棱锥A1-ABC的体积之比为(  )
A.1:2B.1:3C.1:$\sqrt{2}$D.1:4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知经过两点A(5,m)、B(m,8)的直线的斜率大于1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=asin(πx+α)+bcos(πx+β)(其中a,b,α,β为非零实数),若f(2015)=5,求f(2016)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a=tan224°,b=sin136°,c=cos310°,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上是单调增函数,若f(-1)=0,则满足不等式(x-1)f(lnx)<0的x的取值范围是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=3+log2x的定义为[1,4],则函数y=f2(x)+f(x2)的值域是(  )
A.[-4,32]B.[12,21]C.[21,32]D.[12,32]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.当a<1时,f′(x)=2x-a-1且f(0)=a,则不等式f(x)<0的解集是(a,1).

查看答案和解析>>

同步练习册答案