精英家教网 > 高中数学 > 题目详情

【题目】已知数列1,a1 , a2 , 9是等差数列,数列1,b1 , b2 , b3 , 9是等比数列,则 的值为

【答案】
【解析】解:已知数列1,a1 , a2 , 9是等差数列,∴a1+a2 =1+9=10.
数列1,b1 , b2 , b3 , 9是等比数列,∴ =1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),
∴b2=3,则 =
所以答案是
【考点精析】掌握等差数列的性质和等比数列的基本性质是解答本题的根本,需要知道在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列;{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数).

(1)若,求不等式的解集;

(2)若对于任意的,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图像如图所示,将的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式;

(2)在中,角A,B,C满足,且其外接圆的半径R=2,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+bx+c(b,c∈R)
(1)若f(x)的图象与x轴有且仅有一个交点,求b2+c2+2的取值范围;
(2)在b≥0的条件下,若f(x)的定义域[﹣1,0],值域也是[﹣1,0],符合上述要求的函数f(x)是否存在?若存在,求出f(x)的表达式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B两点都在河的对岸(不可到达),为了测量A、B两点间的距离,选取一条基线CD,A、B、C、D在一平面内.测得:CD=200m,∠ADB=∠ACB=30°,∠CBD=60°,则AB=(

A. m
B.200 m
C.100 m
D.数据不够,无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差d∈(0,1),且 =1,当n=8时,{an}的前n项和Sn取得最小值,则a1的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生的视力情况,现采用随机抽样的方法从该校的两班中各抽取名学生进行视力检测,检测的数据如下:

名学生的视力检测结果:

名学生的视力检测结果:

(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生的视力较好?并计算班的名学生视力的方差;

(Ⅱ)现从班的上述名学生中随机选取名,求这名学生中至少有名学生的视力低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)求证: 平面

(3)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其图象向右平移 个单位后得到的函数为奇函数,则函数y=f(x)的图象(
A.关于点( ,0)对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于直线x= 对称

查看答案和解析>>

同步练习册答案