精英家教网 > 高中数学 > 题目详情
已知椭圆的左焦点为F,O为坐标原点.
(1)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x+y=0上,求直线AB的方程;
(2)求过点O、F并且与椭圆的左准线l相切的圆的方程.
【答案】分析:(1)设直线AB的方程为y=k(x+1),代入,整理得(1+2k2)x2+4k2x+2k2-2=0,由直线AB过椭圆的左焦点,知方程有两个不等实根,由此能求出直线AB的方程.
(2)由a2=2,b2=1,c=1,F(-1,0),l:x=-2,知圆过O、F,圆心M在上,由此能求出圆的方程.
解答:解:(1)设直线AB的方程为y=k(x+1),
代入
整理得(1+2k2)x2+4k2x+2k2-2=0,
∵直线AB过椭圆的左焦点,
∴方程有两个不等实根,
设A(x1,y1),B(x2,y2),
AB中点N(x,y),

…(3分)
∵线段AB的中点在直线x+y=0上,

解得k=0或…(5分)
当直线AB与x轴垂直时,
线段AB的中点F不在直线x+y=0上
∴直线AB的方程是y=0或x-2y+1=0…(6分)
(2)∵a2=2,b2=1,
∴c=1,F(-1,0),l:x=-2…(9分)
∴圆过O、F∴圆心M在上,

则圆半径,…(11分)
由|OM|=r得
解之得
故所求圆的方程为…(12分)
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)  已知椭圆的左焦点为F,O为坐标原点。

       (I)求过点O、F,并且与椭圆的左准线相切的圆的方程;

       (II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源:2006年福建省高考数学试卷(文科)(解析版) 题型:解答题

已知椭圆的左焦点为F,O为坐标原点.
(I)求过点O、F,并且与椭圆的左准线l相切的圆的方程;
(II)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x+y=0上,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三第三次模拟考试理科数学试卷(解析版) 题型:解答题

如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;

(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2

试问:是否存在直线AB,使得S1=S2?说明理由.

 

查看答案和解析>>

科目:高中数学 来源:江苏南通市通州区2010高三查漏补缺专项练习数学理 题型:解答题

(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为AC

上顶点为B,过F,B,C三点作,其中圆心P的坐标为

(1) 若椭圆的离心率,求的方程;

(2)若的圆心在直线上,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年黑龙江省高二上学期期末考试数学理卷 题型:填空题

已知椭圆的左焦点为F,右顶点为A,点B在椭圆上,且轴,直线AB交轴于点P。若,则椭圆的离心率为     

 

查看答案和解析>>

同步练习册答案