精英家教网 > 高中数学 > 题目详情

【题目】国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间(已知该校学生平均每天运动的时间范围是 ),如下表所示.

男生平均每天运动的时间分布情况:

女生平均每天运动的时间分布情况

1)假设同组中的每个数据均可用该组区间的中间值代替,请根据样本估算该校男生平均每天运动的时间(结果精确到0.1.

2)若规定平均每天运动的时间不少于的学生为“运动达人”,低于的学生为“非运动达人”.

)根据样本估算该校“运动达人”的数量;

)请根据上述表格中的统计数据填写下面列联表并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“运动达人”与性别有关.

参考公式 其中.

参考数据

【答案】(1).2)(4000(人).)见解析.

【解析】试题分析(1)根据分层抽样计算出男生抽取,女生抽取,由此计算出的值,并计算出男生平均运动时间.(2)(i)运动达人的比例为,故共有人是运动达人.(ii)根据数据列出联表后,计算,故不能在犯错误的概率不超过0.05的前提下认为“运动达人”与性别有关.

试题解析

(1)由题意得,抽取的男生人数为(人),抽取的女生人数为(人),故 .

则估算该校男生平均每天运动的时间为

所以该校男生平均每天运动的时间为.

2)()样本中“运动达人”所占的比例是

故估算该校“运动达人”有(人).

)由统计数据得:

根据上表可得.

故不能在犯错误的概率不超过0.05的前提下认为“运动达人”与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)四边形的顶点在椭圆上,且对角线过原点,若

(1)求的最值;

(2)求证;四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)设函数,试讨论函数的单调性;

(Ⅱ)设函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数),在以直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程和直线的普通方程;

(Ⅱ)若直线与曲线相交于 两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数fx)=Asinωx+φ)(ω0|φ|)在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

2π

x

Asinωx+φ

0

5

5

0

1)请将上表数据补充完整,并直接写出函数fx)的解析式;

2)将yfx)图象上所有点向左平移θθ0)个单位长度,得到ygx)的图象.ygx)图象的一个对称中心为(0),求θ的最小值.

3)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数和方差(同一组中的数据用该区间的中点值作代表);

(2)从被抽取的数学成绩是分以上(包括分)的学生中选两人,求他们在同一分数段的概率;

(3)假设从全市参加高一年级期末考试的学生中,任意抽取个学生,设这四个学生中数学成绩为分以上(包括分)的人数为(以该校学生的成绩的频率估计概率),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下列结论正确的是( )

A. 上所有的点向右平移个单位长度,再把所有图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到曲线

B. 上所有点向左平移个单位长度,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变),得到曲线

C. 上各点的横坐标缩短到原来的倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的3倍(纵坐标不变),再把所得图象上所有的点向左平移个单位长度,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.

(Ⅰ)求的轨迹方程;

(Ⅱ)当不重合)时,求的方程及的面积.

查看答案和解析>>

同步练习册答案