精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线.

(Ⅰ)求的极坐标方程和曲线的参数方程;

(Ⅱ)求曲线的内接矩形的周长的最大值.

【答案】(Ⅰ)曲线的参数方程为:(为参数);的极坐标方程为;(Ⅱ)16.

【解析】

(I)直接利用转换关系,把参数方程、极坐标方程和直角坐标方程之间进行转换;

(II)利用三角函数关系式的恒等变换和正弦型函数的性质的应用,即可求出结果.

(Ⅰ) 由题意:曲线的直角坐标方程为:

所以曲线的参数方程为(为参数),

因为直线的直角坐标方程为:

又因曲线的左焦点为,将其代入中,得到

所以的极坐标方程为 .

(Ⅱ)设椭圆的内接矩形的顶点为

所以椭圆的内接矩形的周长为:

所以当时,即时,椭圆的内接矩形的周长取得最大值16 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于2000

大于2000

仅使用A

27

3

仅使用B

24

1

(Ⅰ)估计该校学生中上个月AB两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为取自某总体的样本,其算术平均值称为样本均值,一般用表示,即,在分组样本场合,样本均值的近似公式为,其中k为组数,为第i组的组中值,为第i组的频数.某单位收集到20名青年的某天娱乐支出费用数据:

79 84 84 88 92 93 94 97 98 99

100 101 101 102 102 108 110 113 118 125

若将分为五组,第一组为,根据分组样本计算样本均值为(

A.99.4B.143.16C.100D.11.96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,数列满足n

1)若,求数列的前2n项和

2)若数列为等差数列,且对任意n恒成立.

①当数列为等差数列时,求证:数列的公差相等;

②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是( )

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则“”是“”的充分不必要条件

C.若随机变量服从二项分布: , 则

D.的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为2015年开始,全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

服务业

参加用户比

脱贫率

那么年的年脱贫率是实施精准扶贫政策前的年均脱贫率的(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60.在这些居民中,经常阅读的城镇居民有100人,农村居民有30.

1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?

城镇居民

农村居民

合计

经常阅读

100

30

不经常阅读

合计

200

2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BMI指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重,当BMI数值小于20.5时,我们说体重较轻,身高大于或等于170cm时,我们说身高较高,身高小于170cm时,我们说身高较矮.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高(cm

166

167

160

173

178

169

158

173

体重(kg

57

58

53

61

66

57

50

66

1)根据最小二乘法的思想与公式求得线性回归方程.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

身高(cm

166

167

160

173

178

169

158

173

体重(kg

57

58

53

61

66

57

50

66

残差

0.1

0.3

0.9

1.5

0.5

2)通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58kg.请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.

参考公式: ..

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.

1)若数列是常数列,,求数列的通项公式;

2)若是不为零的常数),求证:数列是等差数列;

3)若为常数,),.求证:对任意的恒成立.

查看答案和解析>>

同步练习册答案