精英家教网 > 高中数学 > 题目详情
15.已知集合P={x|1≤2x<4},Q={1,2,3},则P∩Q(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

分析 化简集合P,根据交集的定义写出P∩Q即可.

解答 解:集合P={x|1≤2x<4}={x|0≤x<2},
Q={1,2,3},
则P∩Q={1}.
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.2011年4月 25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3000元的部分不必纳税,超过3000元的部分为全月应纳税所得额.此项税款按下表分段累进计算.
级 数全月应纳税所得额税 率
1不超过 1500元的部分5%
2超过 1500元至4500元的部分10%
3超过 4500元至9000元的部分20%
依据草案规定,解答下列问题:
(1)李工程师的月工薪为8000元,则他每月应当纳税多少元?
(2)若某纳税人的月工薪不超过10000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}满足(a1+a2)+(a2+a3)+…+(an+an+1)=2n(n+1)(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设(1-2x)3=a0+2a1x+4a2x2+8a3x3+16a4x4+32a5x5,则a1+a2+a3+a4+a5=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足$\frac{1-z}{1+z}=-i$,则|z|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面区域Ω:$\left\{{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}}$,夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且这两条平行直线间的最短距离为m.若点P(x,y)∈Ω,且mx-y的最小值为p,$\frac{y}{x+m}$的最大值为q,则pq等于(  )
A.$\frac{27}{22}$B.$\frac{2}{5}$C.$\frac{27}{25}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列|{an}满足a1=8,且${a_{n+1}}-{a_n}={2^{n+1}}$(n∈N*),则数列|{an}的前n项和为2n+2+4n-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆心在x轴上、半径为$\sqrt{3}$的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的标准方程是(x+$\sqrt{6}$)2+y2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正三棱柱ABC-A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′-B′C-C′的余弦值;
(2)求线段DE的最小值.

查看答案和解析>>

同步练习册答案