精英家教网 > 高中数学 > 题目详情
13.如图是函数f(x)的导函数f′(x)的图象.现给出如下结论:
①f(x)在(-3,-1)上是增函数;
②x=4是f(x)的极小值点;
③f(x)在(-1,2)上是增函数,在(2,4)上是减函数;
④x=-1一定是f(x)的零点.
其中正确结论的个数是(  )
A.0B.1C.2D.3

分析 根据图象求出函数的单调区间,从而求出函数的极值,进而得到答案.

解答 解:由图象得:x<-1时,f′(x)<0,-1<x<2时,f′(x)>0,
2<x<4时,f′(x)<0,x>4时,f′(x)>0,
∴函数f(x)在(-∞,-1),(2,4)递减,在(-1,2),(4,+∞)递增,
∴在x=-1,4处,函数取得极小值,在x=2处,函数取得极大值,
故②③正确,
故选:C.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.化简$\sqrt{1+sin4}+\sqrt{1-sin4}$,得到(  )
A.-2sin2B.-2cos2C.2sin2D.2cos2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设p:ω=1,q:f(x)=sin($ωx+\frac{π}{3}$)(ω>0)的图象关于点(-$\frac{π}{3}$,0)对称,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在区间[0,π]上随机取一个x,sin(x+$\frac{π}{6}$)≥$\frac{1}{2}$的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.通过市场调查,得到某产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入 x2 3  4  5  6
利润y 2 3  578
(1)画出表中数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)现投入资金15(万元),估计获得的利润为多少万元?
参考公式:
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i-1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$=$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量ξ~N(2,4),则D($\frac{1}{2}$ξ+1)=(  )
A.1B.2C.0.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果当x≥1时,不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围;
(Ⅲ)求证:$\sum_{k=1}^n{[lnk+ln(k+1)]}>\frac{{{n^2}-n-1}}{n+1}(n∈{N^*})$.(说明:$\sum_{i=1}^n{x_i}$=x1+x2+…+xn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin2($\frac{π}{2}$-x)+2$\sqrt{3}$sin(π-x)cosx
(1)求函数f(x)在[-π,π]上的单调递减区间.
(2)在△ABC中,C>$\frac{π}{6}$,若f(c)=1+$\sqrt{3}$,2sinB=cos(A-C)-cos(A+C),求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线x+2y-5=0关于直线x=3对称的直线方程是x-2y-1=0.

查看答案和解析>>

同步练习册答案