精英家教网 > 高中数学 > 题目详情
3.已知-$\frac{π}{2}$<$\frac{α}{2}$<0,sinα=-$\frac{4}{5}$.
(1)求tanα的值;
(2)求cos2α+sin($\frac{π}{2}$-α)的值.

分析 (1)利用同角三角函数的基本关系,分类讨论,求得tanα的值.
(2)利用诱导公式,二倍角公式,分类讨论,求得要求式子的值.

解答 解:(1)∵已知-$\frac{π}{2}$<$\frac{α}{2}$<0,∴-π<α<0,
∵sinα=-$\frac{4}{5}$,∴α在第三或第四象限.
当α在第三象限时,cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$.
当α在第四象限时,cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$.
(2)当α在第三象限时,cos2α+sin($\frac{π}{2}$-α)=2cos2α-1+cosα=2×$\frac{9}{25}$-1-$\frac{3}{5}$=$\frac{22}{25}$.
当α在第四象限时,cos2α+sin($\frac{π}{2}$-α)=2cos2α-1+cosα=2×$\frac{9}{25}$-1+$\frac{3}{5}$=$\frac{8}{25}$.

点评 本题主要考查同角三角函数的基本关系的应用,诱导公式,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列结论错误的是④.(填序号)
①AC∥平面BEF;
②B、C、E、F四点不可能共面;
③若EF⊥CF,则平面ADEF⊥平面ABCD;
④直线EF与AC所成角可能为15°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=1,a2=3,且an+2=3an+1-2an,数列{bn}满足bn=an+1-an,则$\frac{lg{b}_{n+2}-lg{b}_{n+1}}{lg{b}_{n+1}-lg{b}_{n}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2+x-2<0},B={x|2x>1},则A∩(∁UB)=(  )
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ax-(k+1)a-x(a>0且a≠1)是定义在R上的奇函数.
(1)求k的值;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x)在[0,+∞)上的最小值为-6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为(  )
A.7B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{1}{3}{x^3}-2{x^2}+3m,x∈[{0,+∞})$,若f(x)+5≥0恒成立,则实数m的取值范围是(  )
A.$[{\frac{17}{9},+∞})$B.$({\frac{17}{9},+∞})$C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow a,\overrightarrow b$均为单位向量,它们的夹角为$\frac{π}{3}$,那么$|{\overrightarrow a+3\overrightarrow b}|$等于(  )
A.$\sqrt{7}$B.$\sqrt{10}$C.4D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log2(2x-1)
(Ⅰ) 求函数f(x)的单调区间;
(Ⅱ) 若函数g(x)=log2(2x+1),且关于x的方程g(x)=m+f(x)在区间[1,2]上有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案