精英家教网 > 高中数学 > 题目详情
9.一个几何体的三视图如图所示,则其体积等于$\frac{2}{3}$;表面积等于4+$\sqrt{6}$.

分析 根据几何体的三视图,得出该几何体长方体的一个角,画出图形,结合图形求出它的体积与表面积.

解答 解:根据几何体的三视图,得;
该几何体是三棱锥,是长宽高分别为2、1、2的长方体的一个角,
如图所示,
则其体积为V=$\frac{1}{3}$×$\frac{1}{2}$×1×2×2=$\frac{2}{3}$;
表面积为S=S△ABD+S△ABC+S△ACD+S△BCD
=$\frac{1}{2}$×2×2+$\frac{1}{2}$×2×1+$\frac{1}{2}$×2×1+$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{{(\sqrt{5})}^{2}{-(\sqrt{2})}^{2}}$
=4+$\sqrt{6}$.
故答案为:$\frac{2}{3}$,4+$\sqrt{6}$.

点评 本题考查了利用三视图求空间几何体的体积与表面积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是数列{log2an}的前n项和.
(1)求数列{an}的通项公式;
(2)求满足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})≥\frac{1009}{2016}$的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=2log2(2x+t)
(1)t=1时,解不等式f(x)≤2log2(x+1)
(2)t=4时,令g(x)=f(x)-2log2(x+1),求g(x)在x∈[0,1]上最大值与最小值.
(3)当x∈[0,1]时,f(x)≥log2(x+1)恒成立,求t取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cosβ,sinβ)$,其中0<α<β<π,若$|{2\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a+2\overrightarrow b}|$,则β-α=(  )
A.$-\frac{π}{4}$B.$\frac{π}{4}$C.$-\frac{π}{2}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}(x<1)}\\{lo{g}_{4}x(x≥1)}\end{array}\right.$.
(1)求f(0),f(2),f(f(3))的值;
(2)求不等式f(x)≤2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求极限:
(1)$\underset{lim}{x→∞}$$\frac{5{x}^{2}}{x+2}$.
(2)$\underset{lim}{x→∞}$$\frac{3\sqrt{x}}{\sqrt{x}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在直角坐标系中,一动点从点A(1,0)出发,沿单位圆(圆心在坐标原点半径为1的圆)圆周按逆时针方向运动$\frac{2}{3}$π弧长,到达点B,则点B的坐标为(  )
A.(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$)C.(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的函数f(x)在区间(4,+∞)上为增函数,且函数y=f(x+4)为偶函数,则(  )
A.f(3)<f(6)B.f(3)<f(5)C.f(2)<f(3)D.f(2)<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=|sin$\frac{π}{4006}$x|,x∈[-2003,2003].
(1)写出满足条件$\frac{1}{2}<$f(x)<$\frac{\sqrt{3}}{2}$的两个整数x值(不要求证明);
(2)若-2003≤x1<x2<x3≤2003,且f(x2)<f(x1)<f(x3),求证x1x3<0且x1+x3>0.

查看答案和解析>>

同步练习册答案