【题目】如图,在平面直角坐标系内,已知点A(1,0,B(-1,0),圆的方程为,点为圆上的动点.
(1)求过点的圆的切线方程.
(2)求的最大值及此时对应的点的坐标.
【答案】(1)3x-4y-3=0或x=1;(2)详见解析.
【解析】试题分析: ()当存在时,设过点切线的方程为,由圆心到直线的距离等于半径列出方程,求出k值,即可得到切线方程; 当不存在时方程也满足;(2) 设点,则由两点之间的距离公式知,即所求的最大值可转化为最大值, 又为圆上点,所以,再联立此时的直线OC与圆方程求出对应的P点坐标.
试题解析:(1) 当存在时,设过点切线的方程为,
∵圆心坐标为,半径,∴,计算得出,
∴所求的切线方程为; 当不存在时方程也满足,综上所述,所求的直线方程为或。
()设点,则由两点之间的距离公式知
,
要取得最大值只要使最大即可,
又为圆上点,所以,
∴,
此时直线,由,计算得出(舍去)或,∴点的坐标为.
科目:高中数学 来源: 题型:
【题目】统计表明,家庭的月理财投入(单位:千元)与月收入(单位:千元)之间具有线性相关关系.某银行随机抽取5个家庭,获得第(1,2,3,4,5)个家庭的月理财投入与月收入的数据资料,经计算得,,,.
(1)求关于的回归方程;
(2)判断与之间是正相关还是负相关;
(3)若某家庭月理财投入为5千元,预测该家庭的月收入.
附:回归方程的斜率与截距的最小二乘估计公式分别为:
,,其中,为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=m6x﹣4x , m∈R.
(1)当m= 时,求满足f(x+1)>f(x)的实数x的范围;
(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程有实根,求实数的取值范围;
(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:﹣x2+4x+12≥0,q:x2﹣2x+1﹣m2≤0(m>0).
(Ⅰ)若p是q充分不必要条件,求实数m的取值范围;
(Ⅱ)若“¬p”是“¬q”的充分条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数在轴左侧的图象,如图所示,请根据图象.
()写出函数的增区间.
()写出函数的解析式.
()若函数,求函数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,如果存在函数,使得对于一切实数都成立,那么称为函数的一个承托函数.
已知函数的图象经过点.
()若, ,写出函数的一个承托函数(结论不要求注明).
()判断是否存在常数, , ,使得为函数的一个承托函数,且为函数的一个承托函数?若存在,求出, , 的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com