ÒÑÖªº¯Êýf£¨x£©=aln£¨1+ex£©-£¨a+1£©x£®
£¨1£©ÒÑÖªf£¨x£©Âú×ãÏÂÃæÁ½¸öÌõ¼þ£¬ÇóaµÄÈ¡Öµ·¶Î§£®
¢ÙÔÚ£¨-¡Þ£¬1]ÉÏ´æÔÚ¼«Öµ£¬
¢Ú¶ÔÓÚÈÎÒâµÄ¦È¡ÊR£¬c¡ÊRÖ±Ïßl£ºxsin¦È+2y+c=0¶¼²»ÊǺ¯Êýy=f£¨x£©£¨x¡Ê£¨-1£¬+¡Þ£©£©Í¼ÏóµÄÇÐÏߣ»
£¨2£©ÈôµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©´Ó×óµ½ÓÒÒÀ´ÎÊǺ¯Êýy=f£¨x£©Í¼ÏóÉÏÈýµã£¬ÇÒ2x2=x1+x3£¬µ±a£¾0ʱ£¬¡÷ABCÄÜ·ñÊǵÈÑüÈý½ÇÐΣ¿ÈôÄÜ£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ê×ÏÈÇó³öf£¨x£©µÄµ¼Êý£ºf'£¨x£©=-
a+1+ex
1+ex
£¬½ÓÏÂÀ´¿¼ÂÇÌõ¼þ¢Ù£º£¨i£©µ±a¡Ý-1ʱ£¬¿ÉµÃf'£¨x£©£¼0£¬f£¨x£©ÔÚRÉϵ¥µ÷¼õ£¬ÓëÌâÒâ²»·û£»£¨ii£©µ±a£¼-1ʱ£¬¿ÉµÃf'£¨x£©¡Ü0µÄ½â¼¯Îª{x|x¡Ýln£¨-a-1£©}£¬ÌÖÂÛf'£¨x£©µÄ·ûºÅ£¬µÃµ½x0=ln£¨-a-1£©ÊÇf£¨x£©µÄ¼«´óÖµµã£¬½áºÏÌâÒâµÃln£¨-a-1£©£¼1£¬ËùÒÔa¡Ê£¨-1-e£¬-1£©£®ÔÙ¿¼ÂÇÌõ¼þ¢Ú£ºÕÒ³öµ±a¡Ê£¨-e-1£¬-1£©Ê±£¬Âú×ãÌõ¼þ¢ÚµÄaµÄÈ¡Öµ·¶Î§£¬Í¨¹ýÌÖÂÛf¡ä£¨x£©µÄµ¼Êý£¬µÃµ½f¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¶øf'£¨1£©=-1-
a
1+e 
£¬f¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÏÞµÄÇ÷½üÓÚ-1£¬¿ÉµÃf'£¨x£©¡Ê£¨-1£¬-1-
a
1+e 
£©£®×îºó¸ù¾ÝÖ±Ïß l µÄбÂÊk=-
1
2
sin¦È
¡Ü-
1
2
ÇÒÖ±Ïß l ²»ÊǺ¯Êýf£¨x£©Í¼ÏóµÄÇÐÏߣ¬µÃµ½-1-
a
1+ex
¡Ü-
1
2
ÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¼´-2a-1¡Üex£¬Óɴ˿ɵÃa¡Ý-
1+e
2
£®×îºó×ÛÉÏËùÊö¿ÉµÃaµÄÈ¡Öµ·¶Î§ÊÇ[-
1+e
2
£¬-1£©£®
£¨2£©¸ù¾ÝA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬²»·ÁÉèx1£¼x2£¼x3£¬ÓÉ£¨1£©µÄÌÖÂÛµÃf£¨x£©ÔÚRÉϵ¥µ÷¼õ£¬f£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬ÇÒx2=
x1+x3
2
£¬ÓÉ´Ë¿ÉÓ÷´Ö¤·¨Ö¤Ã÷A£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©Èýµã²»¹²Ïߣ®½ÓÏÂÀ´ÓÃÊýÁ¿»ýµÄ×ø±êÔËË㣬½áºÏº¯Êý±í´ïʽ֤³ö
BA
BC
£¼0£¬¿ÉµÃ¡÷ABCÊÇÖÐBΪ¶Û½Ç£®Èô¡÷ABCÄÜÊǵÈÑüÈý½ÇÐΣ¬Ö»ÄÜÊÇ|
BA
|
=|
BC
|
£¬´úÈëËùÉèµÄÊý¾Ý£¬²¢ÇÒ»¯¼òÕûÀí£¬¿ÉµÃe2x2=ex1+ex3£¬×îºóÓûù±¾²»µÈʽµÃµ½ ex1=ex3£¬Óëx1£¼x3ì¶Ü£¬Òò´Ë¿ÉµÃ¡÷ABC²»¿ÉÄÜΪµÈÑüÈý½ÇÐΣ®
½â´ð£º½â£º£¨1£©f'£¨x£©=a•
ex
1+ex
-a-1=-
a+1+ex
1+ex
£¬½ÓÏÂÀ´·ÖÁ½²½£º
¢å¡¢ÏÈ¿¼ÂÇÌõ¼þ¢Ù£º
£¨i£©µ±a+1¡Ý0ʱ£¬¼´a¡Ý-1ʱ£¬¿ÉµÃf'£¨x£©£¼0ÔÚRÉϺã³ÉÁ¢£¬¹Êf£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬ÓëÌâÒâ²»·û£®
£¨ii£©µ±a+1£¼0ʱ£¬¼´a£¼-1ʱ£¬¿ÉµÃf'£¨x£©¡Ü0µÄ½â¼¯Îª{x|x¡Ýln£¨-a-1£©}£¬
´Ëʱf£¨x£©ÔÚ£¨ln£¨-a-1£©£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÔÚ£¨-¡Þ£¬ln£¨-a-1£©£©Éϵ¥µ÷µÝÔö£¬
´Ó¶øx0=ln£¨-a-1£©ÊÇf£¨x£©µÄ¼«´óÖµµã£¬½áºÏÌâÒâµÃln£¨-a-1£©£¼1£¬a£¾-1-e£¬ËùÒÔa¡Ê£¨-1-e£¬-1£©£®
¢æ¡¢ÏÂÃæÕÒ³öµ±a¡Ê£¨-e-1£¬-1£©Ê±£¬Âú×ãÌõ¼þ¢ÚµÄaµÄÈ¡Öµ·¶Î§£®
ÓÖ¡ßf'£¨x£©=-
a+1+ex
1+ex
=-1-
a
1+ex
£¬
Éèg£¨x£©=-1-
a
1+ex
£¬Ôòg'£¨x£©=
aex
(1+ex)2
£¼0ºã³ÉÁ¢£¬
ËùÒÔf¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬¶øf'£¨1£©=-1-
a
1+e 
£¬
½áºÏf¡ä£¨x£©ÔÚ£¨1£¬+¡Þ£©ÉÏÁ¬Ðø£¬µ±xÎÞÏÞµÄÇ÷½üÓÚ+¡Þʱ£¬f¡ä£¨x£©ÎÞÏÞµÄÇ÷½üÓÚ-1£¬
¿ÉµÃf'£¨x£©¡Ê£¨-1£¬-1-
a
1+e 
£©£®
Ö±Ïß l µÄбÂÊk=-
1
2
sin¦È
£¬Ôò |k|¡Ü
1
2
£®
¡ßÖ±Ïß l ²»ÊǺ¯Êýf£¨x£©Í¼ÏóµÄÇÐÏߣ¬
¡à-1-
a
1+ex
¡Ü-
1
2
ÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬¼´-2a-1¡ÜexÔÚ£¨1£¬+¡Þ£©ÉϺã³ÉÁ¢£¬
Óɴ˿ɵÃ-2a-1¡Üe£¬¼´a¡Ý-
1+e
2
£®
×ÛÉÏËùÊö£¬aµÄÈ¡Öµ·¶Î§ÊÇ[-
1+e
2
£¬-1£©£®
£¨2£©ÓÉ£¨1£©Öª£¬a£¾0ʱ£¬f£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬
¡ßA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©£¬
¡à²»·ÁÉèx1£¼x2£¼x3£¬¿ÉµÃf£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬x2=
x1+x3
2
£¬
ÏÂÃæÓ÷´Ö¤·¨ËµÃ÷A£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©£¬C£¨x3£¬f£¨x3£©£©Èýµã²»¹²Ïߣº
ÈôA¡¢B¡¢CÈýµã¹²Ïߣ¬ÔòÓÐf£¨x2£©=
1
2
£¨f£¨x1£©+f£¨x3£©£©
ËùÒÔ 2ex2=ex1+ex3¡Ý2
ex1ex3
£¬µÃx1=x3Óëx1£¼x2£¼x3ì¶Ü£®
½ÓÏÂÀ´ËµÃ÷½ÇBÊǶ۽ǣº
BA
=£¨x1-x2£¬f£¨x1£©-f£¨x2£©£©£¬
BC
=£¨x3-x2£¬f£¨x3£©-f£¨x2£©£©
¡à
BA
BC
=£¨x1-x2£©£¨x3-x2£©+[f£¨x1£©-f£¨x2£©][f£¨x3£©-f£¨x2£©]
¡ßx1-x2£¼0£¬x3-x2£¾0£¬f£¨x1£©-f£¨x2£©£¾0£¬f£¨x3£©-f£¨x2£©£¼0£¬
¡à
BA
BC
£¼0£¬¿ÉµÃ¡ÏB¡Ê£¨
¦Ð
2
£¬¦Ð£©£¬¼´¡÷ABCÊÇÖÐBΪ¶Û½Ç£®
¼ÙÉè¡÷ABCΪµÈÑüÈý½ÇÐΣ¬Ö»ÄÜÊÇ |
BA
|
=|
BC
|

¼´£º£¨x1-x2£©2+[f£¨x1£©-f£¨x2£©]2=£¨x3-x2£©2+[f£¨x3£©-f£¨x2£©]2
¡ßx2-x1=x3-x2£¬¡à[f£¨x1£©-f£¨x2£©]2=[f£¨x3£©-f£¨x2£©]2
½áºÏf£¨x1£©£¾f£¨x2£©£¾f£¨x3£©£¬»¯¼òµÃ2f£¨x2£©=f£¨x1£©+f£¨x3£©£¬
Ò²¾ÍÊÇ2aln£¨1+ex2£©-2£¨a+1£©x2=aln£¨1+ex1£©£¨1+ex3£©-£¨a+1£©£¨x1+x3£©
½«2x2=x1+x3´úÈë¼´µÃ£º2aln£¨1+ex2£©-2£¨a+1£©x2=aln£¨1+ex1£©£¨1+ex3£©-2£¨a+1£©x2£¬
¡à2ln£¨1+ex2£©=ln£¨1+ex1£©£¨1+ex3£©?£¨1+ex2£©2=£¨1+ex1£©£¨1+ex3£©£¬
¿ÉµÃe2x2+2ex2=ex1+x3+ex1+ex3?e2x2=ex1+ex3¢Ù
¶øÊÂʵÉÏ£¬Èô¢Ù³ÉÁ¢£¬¸ù¾Ýex1+ex3¡Ý2
ex1ex3
=2ex2£¬
±ØÈ»µÃµ½ ex1=ex3£¬Óëx1£¼x3ì¶Ü£®
ËùÒÔ¡÷ABC²»¿ÉÄÜΪµÈÑüÈý½ÇÐΣ®
µãÆÀ£º±¾Ìâ×ÛºÏÁËÀûÓõ¼ÊýÑо¿ÇúÏßÉÏijµãÇÐÏß·½³Ì¡¢º¯ÊýÔÚijµãÈ¡µÃ¼«ÖµµÄÌõ¼þºÍÖ±½Ç×ø±êϵÖÐÅжÏÈý½ÇÐεÄÐÎ×´µÈ֪ʶµã£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
a-x2
x
+lnx  (a¡ÊR £¬ x¡Ê[
1
2
 £¬ 2])

£¨1£©µ±a¡Ê[-2£¬
1
4
)
ʱ£¬Çóf£¨x£©µÄ×î´óÖµ£»
£¨2£©Éèg£¨x£©=[f£¨x£©-lnx]•x2£¬kÊÇg£¨x£©Í¼ÏóÉϲ»Í¬Á½µãµÄÁ¬ÏßµÄбÂÊ£¬·ñ´æÔÚʵÊýa£¬Ê¹µÃk¡Ü1ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•º£µíÇø¶þÄ££©ÒÑÖªº¯Êýf£¨x£©=a-2xµÄͼÏó¹ýÔ­µã£¬Ôò²»µÈʽf(x)£¾
34
µÄ½â¼¯Îª
£¨-¡Þ£¬-2£©
£¨-¡Þ£¬-2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a|x|µÄͼÏó¾­¹ýµã£¨1£¬3£©£¬½â²»µÈʽf(
2x
)£¾3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a•2x+b•3x£¬ÆäÖг£Êýa£¬bÂú×ãa•b¡Ù0
£¨1£©Èôa•b£¾0£¬ÅжϺ¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôa=-3b£¬Çóf£¨x+1£©£¾f£¨x£©Ê±µÄxµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=a-2|x|+1£¨a¡Ù0£©£¬¶¨Ò庯ÊýF£¨x£©=
f(x)   £¬  x£¾0
-f(x) £¬    x£¼0
 ¸ø³öÏÂÁÐÃüÌ⣺¢ÙF£¨x£©=|f£¨x£©|£» ¢Úº¯ÊýF£¨x£©ÊÇÆ溯Êý£»¢Ûµ±a£¼0ʱ£¬Èômn£¼0£¬m+n£¾0£¬×ÜÓÐF£¨m£©+F£¨n£©£¼0³ÉÁ¢£¬ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸