精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的一次函数

)设集合,分别从集合中随机取一个数作为mn,求函数是增函数的概率;

)实数mn满足条件求函数的图象经过一、二、三象限的概率.

【答案】;(

【解析】

试题分析:(1)全部结果的基本事件有共个基本事件,设使函数为增函数的事件为个基本事件,所以;(2)要使函数的图象过第一、二、三象限,则,故使函数图象过第一、二、三象限的的区域为第一象限的阴影部分,利用图形面积比即可求概率为

试题解析:解:(1)抽取的全部结果的基本事件有:

,共个基本事件,设使函数为增函数的事件为,则包含的基本事件有:个基本事件,所以.

2满足条件的区域如图所示,

要使函数的图象过第一、二、三象限,则,故使函数图象过第一、二、三象限的的区域为第一象限的阴影部分,所以所求事件的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AC=BC= AA1 , D是棱AA1的中点,DC1⊥BD

(1)证明:DC1⊥BC;
(2)求二面角A1﹣BD﹣C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数,在区间(0,+∞)上为增函数的是(
A.y=ln(x+2)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)在[a,b]上有定义,若对任意x1 , x2∈[a,b],有 则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在[1, ]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1 , x2 , x3 , x4∈[1,3],有 [f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号是(
A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标中,设椭圆的左右两个焦点分别为,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为.

(1)求椭圆的方程;

(2)已知经过点且斜率为,直线与椭圆有两个不同的交点,请问是否存在常数,使得向量共线?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若同时满足条件:
x∈R,f(x)<0或g(x)<0;
x∈(﹣∞,﹣4),f(x)g(x)<0.
则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.
(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A,求事件A的概率P(A);
(2)设X为选出的4人中女生的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案