精英家教网 > 高中数学 > 题目详情
13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,长轴为2$\sqrt{3}$,则椭圆C的方程为(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+y2=1C.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{4}$=1

分析 由题意可得c=1,a=$\sqrt{3}$,再由a,b,c的关系,可得b,进而得到椭圆方程.

解答 解:因为焦距为2,所以c=1,
因为长轴为2$\sqrt{3}$,所以a=$\sqrt{3}$
所以a2-c2=b2=2.
所以椭圆C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.
故选:A.

点评 本题考查椭圆的方程和性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.三角形ABC的三个顶点A(1,3)B(1,-3)C(3,3),求:
(Ⅰ)BC边上中线AD所在直线的方程;
(Ⅱ)三角形ABC的外接圆O1的方程.
(Ⅲ)已知圆O2:x2+y2-4y-6=0,求圆心在x-y-4=0,且过圆O1与圆O2交点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知幂函数f(x)=(t3-t+1)x${\;}^{2+2t-{t}^{2}}$是奇函数,且在(0,+∞)上是增函数.
(1)求函数f(x)的解析式;
(2)已知函数g(x)=f(x)-4$\sqrt{f(x)}$,x∈[1,4],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|3<x<6},B={x|2<x<9},
(Ⅰ)求A∩B,(∁RA)∪(∁RB),
(Ⅱ)已知C={x|a<x<a+1},若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设P(x,y)是曲线$\sqrt{\frac{{x}^{2}}{25}}$+$\sqrt{\frac{{y}^{2}}{16}}$=1上的点,F1(-3,0),F2(3,0),则必有(  )
A.|PF1|+|PF2|≤10B.|PF1|+|PF2|<10C.|PF1|+|PF2|≥10D.|PF1|+|PF2|>10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题错误的个数(  )
①“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
②命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
③命题“若a2+b2=0,则a,b都是0”的否命题是“若a2+b2≠0,则a,b都不是0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点O为△ABC的内部,点D,E分别为边AC,BC的中点,且$|{3\overrightarrow{OD}+2\overrightarrow{DE}}|=3$,则$|{\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}}|$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数y=sin2x+cos2x的图象向右平移$\frac{π}{4}$个单位后,所得图象对应的解析式是(  )
A.y=cos2x+sin2xB.y=sin2x-cos2xC.y=cos2x-sin2xD.y=cosxsinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{a^2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(4,0),若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则a的取值范围是0<a≤2.

查看答案和解析>>

同步练习册答案