精英家教网 > 高中数学 > 题目详情
某老师从课本上抄录一个随机变量ξ的概率分布如下表:
ξ135
P!
请甲同学计算ξ的数学期望,尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数个相同,据此,该同学给出了正确答案Eξ=
 
考点:频率分布表
专题:概率与统计
分析:化简离散型随机变量的分布列公式,求出Eξ即可.
解答: 解:根据题意,得;
设P(ξ=1)=x(0<x<
1
2
),则P(ξ=5)=x;
∴P(ξ=2)=1-2x,
∴Eξ=1•x+3(1-2x)+5•x=3.
故答案为:3.
点评:本题考查了离散型随机变量的分布列的计算问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知z=1+i,ω=(2-i)z-2.
(1)求|ω|;
(2)如果az+b=
.
ω
ω
,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:sin(2α+β)•
1
sinα
-2cos(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sin(πx)(x∈[-2,0])
3-x+1 (x>0)
,则y=f[f(x)]-4的零点为(  )
A、-
π
2
B、
1
2
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin2x+2cosx在区间[-
3
,θ]上的最小值为-
1
4
,则θ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax(a为常数)
(1)若直线x+y+1=0是曲线y=f(x)的一条切线,求a的值;
(2)求函数f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lgx在x=1处的切线方程为(  )
A、y=(lge)(x-1)
B、y=(ln10)(x-1)
C、y=x
D、y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,对任意n∈N*,满足Sn=2n+1-2,数列bn=log2an
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列cn=
1
bnbn+1
,求数列{cn}的前项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={-2,-1,0,1,2},集合A={-1,0,1,2},B={1,2},则集合A∩∁UB等于(  )
A、{0,1,2}
B、{-1,0,1}
C、{-2,-1,0}
D、{-1,0}

查看答案和解析>>

同步练习册答案