精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3ax+1在(0,1)上存在x0,使得f(x0)=0,则a的取值范围是
 
考点:一次函数的性质与图象
专题:计算题,函数的性质及应用
分析:由题意知f(0)•f(1)<0,从而解得.
解答: 解:∵函数f(x)=3ax+1在(0,1)上存在x0,使得f(x0)=0,
∴f(0)•f(1)<0,
∴1(3a+1)<0;
故a<-
1
3

故答案为:a<-
1
3
点评:本题考查了一次函数的图象与性质应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>1,若a+b=2,则
2
a
+
1
b
-1的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
已知直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数),曲线C的参数方程为
x=4cosθ
y=2
3
sinθ
(θ为参数),设直线l与曲线C交于A、B两点.
(1)求直线l与曲线C的普通方程;
(2)设P(2,0),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
sin(π+θ)-2sin(
π
2
+θ)
cos(
π
2
+θ)-sin(
π
2
-θ)
=3

(Ⅰ)求tanθ的值;
(Ⅱ)sin2θ+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
10
i=1
xi=80
10
i=1
yi
=20,
10
i=1
xiyi
=184,
10
i=1
x
2
i
=720.
1)求家庭的月储蓄y关于月收入x的线性回归方程
?
y
=
?
b
x+
?
a

2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,4)且与抛物线y2=8x有且只有一个公共点的直线有(  )
A、0条B、1条C、2条D、.3条

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(a<0),g(x)=2lnx+bx,且函数g(x)在x=1处的切线斜率为2.
(1)若对[1,+∞)内的一切实数x,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=-1时,求最大的正整数k,使得对[e,3]内的任意k个实数x1、x2、…xk都有f(x1)+f(x2)+…+f(xk)≤16g(xk)成立;
(3)求证:ln(2n+1)<
n
2
+
n
i=1
6i+1
4i2-1
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|2014≤x≤2015},N={x|x<a,a∈Z},若“x∈M”是“x∈N”的充分而不必要条件.
(1)求整数a的最小值;
(2)在(1)的条件下,写出命题“若x+2014≤a,则
1
x-1
≥a-2015”的否命题,并判断否命题的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

记满足如下三个性质的函数称为l型函数:
①对任意a,b属于R,都有g(a+b)=g(a)g(b);
②对任意x属于R,g(x)>0;
③对任意x>0,g(x)>1.
已知函数y=g(x)为l型函数.
(1)求 g(x)•g(-x)的值;
(2)证明当x<0时,g(x)<1,且函数y=g(x)在R上单调递增.

查看答案和解析>>

同步练习册答案