精英家教网 > 高中数学 > 题目详情

【题目】如图,关于正方体ABCD﹣A1B1C1D1 , 下面结论错误的是(
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.该正方体的外接球和内接球的半径之比为2:1

【答案】D
【解析】解:由正方体ABCD﹣A1B1C1D1 , 知: 在A中,∵BD⊥AC,BD⊥AA1 , AC∩AA1=A,∴BD⊥平面ACC1A1 , 故A正确;
在B中,∵ABCD是正方形,∴AC⊥BD,故B正确;
在C中,∵A1B∥D1C,A1B平面CDD1C1 , D1C平面CDD1C1 , 故A1B∥平面CDD1C1 , 故C正确;
在D中,该正方体的外接球和内接球的半径之比为 = :1.故D错误.
故选:D.
在A中,由BD⊥AC,BD⊥AA1 , 知BD⊥平面ACC1A1;在B中,由ABCD是正方形,知AC⊥BD;在C中,由A1B∥D1C,知A1B∥平面CDD1C1;在D中,该正方体的外接球和内接球的半径之比为 :1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

a0时,求曲线fx)在x 1处的切线方程;

设函数,求函数hx)的极值;

[1e]e2718 28…)上存在一点x0,使得成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C焦点在y轴上,离心率为 ,上焦点到上顶点距离为2﹣
(1)求椭圆C的标准方程;
(2)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积SOPQ=1,则| |2+| |2是否为定值,若是求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,面为直角梯形, ,平面 平面 是边长为2的正三角形.

(1)证明:

(2)证明: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x﹣2sinxcosx﹣sin4x.
(1)求f(x)的最小正周期;
(2)求f(x)的单调增区间;
(3)若 ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论: ①已知函数f(x)是定义在R上的奇函数,若f(﹣1)=2,f(﹣3)=﹣1,则f(3)<f(﹣1);
②函数y=log (x2﹣2x)的单调递增减区间是(﹣∞,0);
③已知函数f(x)是奇函数,当x≥0时,f(x)=x2 , 则当x<0时,f(x)=﹣x2
④若函数y=f(x)的图象与函数y=ex的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).
则正确结论的序号是(请将所有正确结论的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数f(x)=﹣x2+4x﹣6,x∈[0,5]的值域(
A.[﹣6,﹣2]
B.[﹣11,﹣2]
C.[﹣11,﹣6]
D.[﹣11,﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在处有公切线.

(Ⅰ)求实数的值;

(Ⅱ)求函数的极大值和极小值;

(Ⅲ)关于x的方程由几个不同的实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是二次函数,方程f(x)=0有两相等实根,且f′(x)=2x+2
(1)求f(x)的解析式.
(2)求函数y=f(x)与y=﹣x2﹣4x+1所围成的图形的面积.

查看答案和解析>>

同步练习册答案