精英家教网 > 高中数学 > 题目详情
14.已知抛物线y2=2px(p>0),过点K(-4,0)作抛物线的两条切线KA,KB,A,B为切点,若AB过抛物线的焦点,△KAB的面积为24,则p的值是(  )
A.12B.-12C.8D.4

分析 由抛物线的对称性知,AB⊥x轴,且AB是焦点弦,故AB=2p,利用△KAB的面积为24,求出p的值.

解答 解:由抛物线的对称性知,AB⊥x轴,且AB是焦点弦,故AB=2p,
所以${S_{△KAB}}=\frac{1}{2}×2p({\frac{p}{2}+4})=24$,解得p=4,
故选:D.

点评 本题考查三角形面积的计算,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.$(1+\sqrt{2}){m^2}$B.$(1+2\sqrt{2}){m^2}$C.$(2+\sqrt{2}){m^2}$D.$(2+2\sqrt{2}){m^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中,a1=-6,公差为d,前n项和为Sn,当且仅当n=6时,Sn取得最小值,则d的取值范围为(  )
A.$(-1,-\frac{7}{8})$B.(0,+∞)C.(-∞,0)D.$(1,\frac{6}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方形O′A′B′C′的边长为2cm,它是水平放置的一个平面图形的直观图,则原平面图形的周长是(  )cm.
A.12B.16C.$4(1+\sqrt{3})$D.$4(1+\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(1+3i)z=i-3,则z等于(  )
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=xex在(1,f(1))处的切线方程是y=2ex-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为$ρ=\sqrt{2}$,直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数).
(1)点P在曲线C上,Q在直线l上,若$α=\frac{3}{4}π$,求线段|PQ|的最小值;
(2)设直线l与曲线C有两个不同的交点,求直线l的斜率k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设$\overrightarrow{AP}=x\overrightarrow{AD}$,$\overrightarrow{PB}•\overrightarrow{PC}=y$,则得到函数y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=$\frac{π}{3}$,AD=4,AM=2,E是AB的中点
(1)求证:平面MDE⊥平面NDC
(2)求三棱锥N-MDC的体积.

查看答案和解析>>

同步练习册答案