精英家教网 > 高中数学 > 题目详情
函数f(x)=
2sinx+1
+lg(2cosx-1)的定义域是
 
考点:函数的定义域及其求法
专题:计算题,函数的性质及应用
分析:由题意得
2sinx+1≥0
2cosx-1>0
,解得,2kπ-
π
6
≤x<2kπ+
π
3
,k∈Z.
解答: 解:由题意得
2sinx+1≥0
2cosx-1>0

解得,2kπ-
π
6
≤x<2kπ+
π
3
,k∈Z,
故函数f(x)=
2sinx+1
+lg(2cosx-1)的定义域是
[2kπ-
π
6
,2kπ+
π
3
)k∈Z.
故答案为:[2kπ-
π
6
,2kπ+
π
3
)k∈Z.
点评:本题考查了函数的定义域的求法,得不等式组解出即可,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+x
,则f(log23)+f(log35)+f(log32)+f(log53)=(  )
A、2B、1C、4D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

如果
π
4
<σ<
π
2
,那么下列不等式成立的是(  )
A、cosσ<sinσ<tanσ
B、tanσ<sinσ<cosσ
C、sinσ<cosσ<tanσ
D、cosσ<tanσ<sinσ

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①函数y=-
2
x
在其定义域上是增函数;        
②函数y=
x2(x-1)
x-1
是偶函数;
③函数y=log2(x-1)的图象可由y=log2(x+1)的图象向右平移2个单位得到;
④若F(x)=
x,x>0
-x,x<0
,则f(-1)=0;  
 则上述正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=3cos(2x+φ)的图象关于点(
π
3
,0)
中心对称,那么ϕ的最小正值为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=4sin(2x-
π
3
)
(x∈R),下列命题正确的是(  )
A、由f(x1)=f(x2)=0可得x1-x2必是π的整数倍
B、y=f(x)的表达式可改写为y=4cos(2x+
π
6
C、y=f(x)的图象关于点(
π
6
,0)
对称
D、y=f(x)的图象关于直线x=-
π
6
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
3+2sinx+cosx
的最大值是(  )
A、
3
3
-1
B、
5
3
+1
C、
3-
5
4
D、
3+
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
2-i
1+i
的模是(  )
A、
10
4
B、
10
2
C、
10
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log4a)+f(log
1
4
a)≤2f(1),则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案