精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)是定义在R上的奇函数,且当x0时,fx)=x2+2x.现已画出函数fx)在y轴左侧的图象如图所示,

(1)画出函数fx),xR剩余部分的图象,并根据图象写出函数fx),xR的单调区间;(只写答案)

2)求函数fx),xR的解析式.

【答案】(1)图象见解析;递减区间为(﹣,﹣1][1+∞);增区间为(﹣11);

(2)fx

【解析】

1)根据题意,由奇函数的性质结合函数fx)在y轴左侧的图象,即可补充函数图象,据此写出函数的单调区间即可得答案;

2)根据题意,由奇函数的性质可得f0)=0,设x0时,则﹣x0,由函数的解析式可得f(﹣x),结合奇函数的性质可得fx)的解析式,综合即可得答案.

1)根据题意,函数fx)是定义在R上的奇函数,则其图象如图:

其递减区间为(﹣,﹣1][1+∞);

增区间为(﹣11);

2)根据题意,函数fx)是定义在R上的奇函数,则f0)=0,满足fx)=x2+2x

x0时,则﹣x0,则f(﹣x)=(﹣x2+2(﹣x)=x22x

又由函数fx)是定义在R上的奇函数,则fx)=﹣f(﹣x)=﹣x2+2x

综上:fx

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD= ,F为PC的中点,AF⊥PB.

(1)求PA的长;
(2)求二面角B﹣AF﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面上,点,点在单位圆上且 .

(1)若点,求的值:

(2)若,四边形的面积用表示,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018河南安阳市高三一模如下图在平面直角坐标系直线与直线之间的阴影部分即为区域中动点的距离之积为1

)求点的轨迹的方程

)动直线穿过区域分别交直线两点若直线与轨迹有且只有一个公共点求证 的面积恒为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=x2+bx+c有两个零点1和﹣1

1)求fx)的解析式;

2)设gx,试判断函数gx)在区间(﹣11)上的单调性并用定义证明;

3)由(2)函数gx)在区间(﹣11)上,若实数t满足gt1)﹣g(﹣t)>0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数fx)=aa为常数).

1)求a的值;

2)若函数gx)=|2x+1fx|k2个零点,求实数k的取值范围;

3)若x[2,﹣1]时,不等式fx恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度x/C

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

,线性回归模型的残差平方和e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.

()若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);

()若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.

( i )试与()中的回归模型相比,用R2说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为

=;相关指数R2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个结论:

①函数是偶函数;

②当时,函数的值域是

③若扇形的周长为,圆心角为,则该扇形的弧长为6 cm;

④已知定义域为的函数,当且仅当时,成立.

则上述结论中正确的是______(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:)的影响,对近年的年宣传费和年销售量作了初步统计和处理,得到的数据如下:

年宣传费(单位:万元)

年销售量(单位:

.

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出关于的线性回归方程

(3)若公司计划下一年度投入宣传费万元,试预测年销售量的值.

参考公式

查看答案和解析>>

同步练习册答案